Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38647309

RESUMO

Hydrogen clathrate hydrates are ice-like crystalline substances in which hydrogen molecules are trapped inside polyhedral cages formed by the water molecules. Small cages can host only a single H2 molecule, while each large cage can be occupied by up to four H2 molecules. Here, we present a neutron scattering study on the structure of the sII hydrogen clathrate hydrate and on the low-temperature dynamics of the hydrogen molecules trapped in its large cages, as a function of the gas content in the samples. We observe spectral features at low energy transfer (between 1 and 3 meV), and we show that they can be successfully assigned to the rattling motion of a single hydrogen molecule occupying a large water cage. These inelastic bands remarkably lose their intensity with increasing the hydrogen filling, consistently with the fact that the probability of single occupation (as opposed to multiple occupation) increases as the hydrogen content in the sample gets lower. The spectral intensity of the H2 rattling bands is studied as a function of the momentum transfer for partially emptied samples and compared with three distinct quantum models for a single H2 molecule in a large cage: (i) the exact solution of the Schrödinger equation for a well-assessed semiempirical force field, (ii) a particle trapped in a rigid sphere, and (iii) an isotropic three-dimensional harmonic oscillator. The first model provides good agreement between calculations and experimental data, while the last two only reproduce their qualitative trend. Finally, the radial wavefunctions of the three aforementioned models, as well as their potential surfaces, are presented and discussed.

2.
Proc Natl Acad Sci U S A ; 120(52): e2312665120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109537

RESUMO

Hydrogen hydrates are among the basic constituents of our solar system's outer planets, some of their moons, as well Neptune-like exo-planets. The details of their high-pressure phases and their thermodynamic conditions of formation and stability are fundamental information for establishing the presence of hydrogen hydrates in the interior of those celestial bodies, for example, against the presence of the pure components (water ice and molecular hydrogen). Here, we report a synthesis path and experimental observation, by X-ray diffraction and Raman spectroscopy measurements, of the most H[Formula: see text]-dense phase of hydrogen hydrate so far reported, namely the compound 3 (or C[Formula: see text]). The detailed characterisation of this hydrogen-filled ice, based on the crystal structure of cubic ice I (ice I[Formula: see text]), is performed by comparing the experimental observations with first-principles calculations based on density functional theory and the stochastic self-consistent harmonic approximation. We observe that the extreme (up to 90 GPa and likely beyond) pressure stability of this hydrate phase is due to the close-packed geometry of the hydrogen molecules caged in the ice I[Formula: see text] skeleton.

3.
Nat Commun ; 12(1): 1958, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785748

RESUMO

Methane, the principal component of natural gas, is an important energy source and raw material for chemical reactions. It also plays a significant role in planetary physics, being one of the major constituents of giant planets. Here, we report measurements of the molecular self-diffusion coefficient of dense supercritical CH4 reaching the freezing pressure. We find that the high-pressure behaviour of the self-diffusion coefficient measured by quasi-elastic neutron scattering at 300 K departs from that expected for a dense fluid of hard spheres and suggests a density-dependent molecular diameter. Breakdown of the Stokes-Einstein-Sutherland relation is observed and the experimental results suggest the existence of another scaling between self-diffusion coefficient D and shear viscosity η, in such a way that Dη/ρ=constant at constant temperature, with ρ the density. These findings underpin the lack of a simple model for dense fluids including the pressure dependence of their transport properties.

4.
Proc Natl Acad Sci U S A ; 116(33): 16204-16209, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31332007

RESUMO

Gas hydrates consist of hydrogen-bonded water frameworks enclosing guest gas molecules and have been the focus of intense research for almost 40 y, both for their fundamental role in the understanding of hydrophobic interactions and for gas storage and energy-related applications. The stable structure of methane hydrate above 2 GPa, where CH4 molecules are located within H2O or D2O channels, is referred to as methane hydrate III (MH-III). The stability limit of MH-III and the existence of a new high-pressure phase above 40 to 50 GPa, although recently conjectured, remain unsolved to date. We report evidence for a further high-pressure, room-temperature phase of the CH4-D2O hydrate, based on Raman spectroscopy in diamond anvil cell and ab initio molecular dynamics simulations including nuclear quantum effects. Our results reveal that a methane hydrate IV (MH-IV) structure, where the D2O network is isomorphic with ice Ih, forms at ∼40 GPa and remains stable up to 150 GPa at least. Our proposed MH-IV structure is fully consistent with previous unresolved X-ray diffraction patterns at 55 GPa [T. Tanaka et al., J. Chem. Phys. 139, 104701 (2013)]. The MH-III → MH-IV transition mechanism, as suggested by the simulations, is complex. The MH-IV structure, where methane molecules intercalate the tetrahedral network of hexagonal ice, represents the highest-pressure gas hydrate known up to now. Repulsive interactions between methane and water dominate at the very high pressure probed here and the tetrahedral topology outperforms other possible arrangements in terms of space filling.

6.
Proc Natl Acad Sci U S A ; 112(27): 8216-20, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100876

RESUMO

The richness of the phase diagram of water reduces drastically at very high pressures where only two molecular phases, proton-disordered ice VII and proton-ordered ice VIII, are known. Both phases transform to the centered hydrogen bond atomic phase ice X above about 60 GPa, i.e., at pressures experienced in the interior of large ice bodies in the universe, such as Saturn and Neptune, where nonmolecular ice is thought to be the most abundant phase of water. In this work, we investigate, by Raman spectroscopy up to megabar pressures and ab initio simulations, how the transformation of ice VII in ice X is affected by the presence of salt inclusions in the ice lattice. Considerable amounts of salt can be included in ice VII structure under pressure via rock-ice interaction at depth and processes occurring during planetary accretion. Our study reveals that the presence of salt hinders proton order and hydrogen bond symmetrization, and pushes ice VII to ice X transformation to higher and higher pressures as the concentration of salt is increased.

7.
Nano Lett ; 14(12): 6761-6, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25354371

RESUMO

We report the synthesis of Methylammonium Lead Iodide (CH(3)NH(3)PbI(3)) nanowires by a low temperature solution processed crystallization using a simple slip-coating method. The anisotropic particle shape exhibits advantages over nanoparticles in terms of charge transport under illumination. These results provide a basis for solvent-mediated tailoring of structural properties like the crystallite size and orientation in trihalide perovskite thin films, which, once implemented into a device, may ultimately result in an enhanced charge carrier extraction.

8.
J Phys Chem Lett ; 5(14): 2488-92, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26277821

RESUMO

We report on the temperature dependence of thermal conductivity of single crystalline and polycrystalline organometallic perovskite CH3NH3PbI3. The comparable absolute values and temperature dependence of the two samples' morphologies indicate the minor role of the grain boundaries on the heat transport. Theoretical modeling demonstrates the importance of the resonant scattering in both specimens. The interaction between phonon waves and rotational degrees of freedom of CH3NH3(+) sublattice emerges as the dominant mechanism for attenuation of heat transport and for ultralow thermal conductivity of 0.5 W/(Km) at room temperature.

9.
J Magn Reson ; 195(2): 206-10, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18835205

RESUMO

We present a newly-developed microwave probe for performing sensitive high-field/multi-frequency electron spin resonance (ESR) measurements under high hydrostatic pressures. The system consists of a BeCu-made pressure-resistant vessel, which accommodates the investigated sample and a diamond microwave coupling window. The probe's interior is completely filled with a pressure-transmitting fluid. The setup operates in reflection mode and can easily be assembled with a standard oversized microwave circuitry. The probe-head withstands hydrostatic pressures up to 1.6 GPa and interfaces with our home-built quasi-optical high-field ESR facility, operating in a millimeter/submillimeter frequency range of 105-420 GHz and in magnetic fields up to 16 T. The overall performance of the probe was tested, while studying the pressure-induced changes in the spin-relaxation mechanisms of a quasi-1D conducting polymer, KC(60). The preliminary measurements revealed that the probe yields similar signal-to-noise ratio to that of commercially available low-frequency ESR spectrometers. Moreover, by observing the conduction electron spin resonance (CESR) linewidth broadening for KC(60) in an unprecedented microwave frequency range of 210-420 GHz and in the pressure range of up to 1.6 GPa, we demonstrate that a combination of high-pressure ESR probe and high-field/multi-frequency spectrometer allows us to measure the spin relaxation rates in conducting spin systems, like the quasi-1D conductor, KC(60).


Assuntos
Algoritmos , Espectroscopia de Ressonância de Spin Eletrônica/instrumentação , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Manejo de Espécimes/instrumentação , Raios Infravermelhos , Pressão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Manejo de Espécimes/métodos
10.
J Magn Reson ; 192(2): 265-8, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18375160

RESUMO

We report the development of the frequency-modulation (FM) method for measuring electron spin resonance (ESR) absorption in the 210- to 420GHz frequency range. We demonstrate that using a high-frequency ESR spectrometer without resonating microwave components enables us to overcome technical difficulties associated with the FM method due to nonlinear microwave-elements, without sacrificing spectrometer performance. FM was achieved by modulating the reference oscillator of a 13GHz Phase-Locked Dielectric Resonator Oscillator, and amplifying and frequency-multiplying the resulting millimeter-wave radiation up to 210, 315 and 420GHz. ESR spectra were obtained in reflection mode by a lock-in detection at the fundamental modulation frequency, and also at the second and third harmonic. Sensitivity of the setup was verified by conduction electron spin resonance measurement in KC60.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...