Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 153: 113409, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076534

RESUMO

Ulcerative colitis is an idiopathic disease that is widely incident worldwide. Canagliflozin, antidiabetic agent, exhibited significant anti-inflammatory effects in a variety of animal models. Additionally, hyaluronic acid is considered one of the key players in the tissue regeneration process. It has been proven to modulate inflammation and cellular migration, which are the main phases of wound healing. The combination of hyaluronic acid with chitosan in microsphere fabrication was anticipated to reveal a synergistic muco-adhesiveness potential with additional advantage of the chitosan penetration enhancing effect. The current study aimed to explore the potential of canagliflozin-loaded chitosan-hyaluronic acid microspheres intrarectal administration to mitigate acetic acid-induced colitis in rats. Colon tissues were examined for macroscopic and microscopic pathological changes. ELISA and qRT-PCR techniques were applied for the detection of cytokines involved in the AMPK/NF-κB/NLRP3 axis. Intrarectal administration of this formula alleviated colitis severity, which was reflected by the reduced DAI, MES, colonic weight/length ratio and histopathological scoring values. Interestingly, canagliflozin-loaded chitosan-hyaluronic acid microspheres significantly enhanced AMPK phosphorylation and depressed NF-κB and NLRP3 expression leading to a subsequent reduction in caspase-1 cleavage and the inhibition of several inflammatory cytokines, including IL-1ß, and IL-18. Overall, the current study revealed that the protective effects of the formula against acetic acid-induced colitis are primarily mediated via augmenting AMPK phosphorylation and its consequences of NF-κB inactivation. Since canagliflozin is not associated with hypoglycemic effects, clinical application of canagliflozin-loaded chitosan-hyaluronic acid microspheres represent a novel therapeutic option for the treatment of patients with ulcerative colitis.


Assuntos
Quitosana , Colite Ulcerativa , Colite , Proteínas Quinases Ativadas por AMP/metabolismo , Ácido Acético/farmacologia , Animais , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Quitosana/farmacologia , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colo , Citocinas/metabolismo , Ácido Hialurônico/metabolismo , Microesferas , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Transdução de Sinais
2.
Biomed Pharmacother ; 153: 113247, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35724510

RESUMO

Ulcerative colitis (UC) is a prevalent type of inflammatory bowel diseases that may predispose patients to acquire colitis-related cancer if treatment was not effective. Despite the presence of an array of established treatment options, current modalities are not successful for a substanial number of patients. The activation of the NLRP3 inflammasome is critical in the development of inflammatory processes in the colon. Additionally, the regulation of NLRP3 via HSP90 inhibition is a potential target to treat UC. Moreover, during inflammation, autophagy allows the turnover of malfunctioning proteins and therefore stands as a viable strategy for inactivating NLRP3 inflammasomes and halting hyperinflammation. Herein, we evaluated the effect of autophagy induction using metformin in the context of HSP90 inhibition by TAS-116 in the dextran sodium sulfate (DSS)-induced UC in rats. We revealed that TAS-116-induced interruption of the protein complex containing HSP90 and NLRP3 might hamper and delay the start of the inflammatory cascade ensued by the NLRP3 inflammasome oligomerization. In such circumstances, the unprotected NLRP3 is subjected to autophagic degradation in an environment of metformin-promoted autophagic signaling. As a result, such dynamic synergy was efficient in combating colon damage and immune-cell infiltration. This was confirmed by the macroscopic and microscopic investigations. Further, biochemical analysis revealed subdued inflammation cascade and oxidative injury. Therefore, simultaneous administration of TAS-116 and metformin is a new management paradigm aimed at inducing malfunction in the NLRP3 followed by augmenting its autophagic degradation, respectively. However, further studies should be conducted to assess the reliability and consistency of this novel approach.


Assuntos
Benzamidas , Colite Ulcerativa , Metformina , Pirazóis , Animais , Benzamidas/farmacologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Sulfato de Dextrana/toxicidade , Inflamassomos/metabolismo , Inflamação , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pirazóis/farmacologia , Ratos , Reprodutibilidade dos Testes
3.
Biomed Pharmacother ; 148: 112723, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35202914

RESUMO

Pulmonary fibrosis (PF) is a life-threatening disorder with a very poor prognosis. Because of the complexity of PF pathological mechanisms, filling such an unmet medical need is challenging. A number of pulmonary diseases have been linked to the activation of NF-κB and the NLRP3 inflammasome. Coomassie brilliant blue G-250 (CBBG) is proved to be a safe highly selective P2×7R antagonist with promising consequent inactivation of NLRP3 inflammasome. This is the first report to investigate the effect of CBBG on the bleomycin-induced lung fibrosis in rats. Our findings revealed that CBBG resulted in a significant improvement in histological features and oxidative status biomarkers of bleomycin-exposed lung tissue. Additionally, CBBG repressed collagen deposition as indicated after the analysis of hydroxyproline, TGF-ß, PDGF-BB, TIMP-1, MMP-9, Col1a1, SMA and ICAM-1. It also exhibited anti-inflammatory potential as revealed by the determination of TNF-α, IL-1ß, IL-18, MCP-1 in the lung tissue. In the bronchoalveolar lavage, the total protein and the LDH activity were substantially reduced. The lung protective effects of CBBG might be attributed on the one hand to the inhibition of NLRP3 inflammasome and on the other hand to the inactivation of NF-κB. Decreased levels of phospho-p65 and its DNA-binding activity as well as the analysis of TLR4 confirmed NF-κB inactivation. Caspase-1 activity is suppressed as a consequence of inhibiting NLRP3 inflammasome assembly. To conclude, CBBG may act as a primary or adjuvant therapy for the management of PF and therefore it may pose an opportunity for a novel approach to an unmet medical need.


Assuntos
NF-kappa B , Fibrose Pulmonar , Animais , Bleomicina/toxicidade , Inflamassomos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Ratos , Corantes de Rosanilina
4.
Biomed Pharmacother ; 148: 112731, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35220029

RESUMO

Pulmonary fibrosis (PF) is a chronic progressive disease that portends a very poor prognosis. It has been suggested that STAT3 is a potential target in PF. This study highlights the importance of cubosomes as a drug delivery system in enhancing the bioavailability of nifuroxazide (NXZD), a poorly soluble STAT3 inhibitor. NXZD-loaded cubosomes (NXZD-LC) were in vitro and in vivo evaluated. In vitro, cubosomes presented a poly-angular nanosized particles with a mean size and zeta potential of 223.73 ± 4.73 nm and - 20.93 ± 2.38 mV, respectively. The entrapment efficiency of nifuroxazide was 90.56 ± 4.25%. The in vivo pharmacokinetic study and the lung tissue accumulation of NXZD were performed by liquid chromatography-tandem mass spectrometry after oral administration to rats. The nanoparticles exhibited a two-fold increase and 1.33 times of bioavailability and lung tissue concentration of NXZD compared to NXZD dispersion, respectively. In view of this, NXZD-LC effectively attenuated PF by targeting STAT3 and NF-κB signals. As a result, NXZD-LC showed a potential anti-inflammatory effect as revealed by the significant decrease in MCP-1, ICAM-1, IL-6, and TNF-α and suppressed fibrogenic mediators as indicated by the significant reduction in TGF-ß, TIMP-1, and PDGF-BB in lung tissues. Besides, NXZD-LC improved antioxidant defense mechanisms and decreased LDH and BALF total protein. These effects contributed to decreased collagen deposition. To conclude, cubosomes represent an advantageous pharmaceutical delivery system for enhancing pulmonary delivery of poorly soluble drugs. Additionally, repurposing NXZD as an antifibrotic agent is a promising challenge and new therapeutic approach for unmet therapeutic needs.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Hidroxibenzoatos/farmacologia , NF-kappa B/metabolismo , Nanopartículas/química , Nitrofuranos/farmacologia , Fibrose Pulmonar/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Administração Oral , Animais , Anti-Inflamatórios/farmacologia , Antifibróticos/farmacocinética , Antifibróticos/farmacologia , Disponibilidade Biológica , Bleomicina/efeitos adversos , Hidroxibenzoatos/farmacocinética , Pulmão/patologia , Masculino , Nitrofuranos/farmacocinética , Fibrose Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
5.
Biomed Pharmacother ; 145: 112455, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34844106

RESUMO

Hepatocellular carcinoma (HCC) is on the rise worldwide, and its incidence in diabetic patients is two to three times that of non-diabetics. Current therapeutic options fail to provide considerable survival benefits to patients with HCC. There is a strong possibility that the FDA-approved antidiabetic combination of empagliflozin and metformin could show complementary effects to control HCC progression. However, their multitarget effects have not yet been studied on HCC development. Therefore, the present study aims to evaluate the antitumorigenic activity of this combination in non-diabetic mice with diethylnitrosamine-induced HCC. Empagliflozin/metformin combination prolonged survival and improved histological features of mice livers. Additionally, Empagliflozin/metformin showed anti-inflammatory potential and relieved oxidative stress. On the one hand these effects are likely attributed to the ability of metformin to inactivate NF-κB in an AMPK-dependent mechanism and on the other hand to the ability of the empagliflozin to inhibit the MAPKs, p38 and ERK1/2. Empagliflozin also showed a less robust effect on AMPK than that of metformin. Moreover, empagliflozin enhanced the autophagy inducing activity of metformin. Furthermore, empagliflozin/metformin exhibited increased apoptotic potential. Consequently, empagliflozin augmented the antitumorigenic function of metformin by exerting better control of angiogenesis, and metastasis. To conclude, our findings suggest empagliflozin as an ideal adjunct to metformin for the inhibition of HCC progression. In addition, since the incidence of hypoglycemia is minimal due to insulin-independent mechanism of action of both treatments, empagliflozin/metformin could be a promising therapeutic modality for the management of diabetic patients with HCC; and even non diabetic ones.


Assuntos
Compostos Benzidrílicos/farmacologia , Carcinoma Hepatocelular , Glucosídeos/farmacologia , Neoplasias Hepáticas , Metformina/farmacologia , Neovascularização Patológica/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Progressão da Doença , Hipoglicemiantes/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , MAP Quinase Quinase Quinases/metabolismo , Camundongos , NF-kappa B/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
6.
Life Sci ; 286: 120070, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34688695

RESUMO

AIM: Metformin and empagliflozin combined therapy may have complementary effects that go beyond the well-recognized targets of their monotherapy through AMPK activation. Therefore, the current study was designed to investigate for the first time the hepatoprotective effects of such combination therapy in the carbon tetrachloride (CCl4)-induced hepatic fibrosis model in mice. MATERIALS AND METHODS: Determination of liver enzymes and the liver content of oxidative stress parameters, and hydroxyproline were performed biochemically. ELISA was performed to measure PDGF-BB, TNF-α, TGF-ß, TIMP-1, AMPK, p-mTOR, NF-κB P65 binding activity, p38 MAPKα, JNK1/2 and ERK1/2. Real-time qPCR was conducted to determine Col1a1 and α-SMA. In addition, histopathological examination using H&E and Masson's trichrome stain were performed for determination of histopathological changes. KEY FINDINGS: Empagliflozin inhibited the activation of p38 MAPK and ERK1/2 and exhibited a weak AMPKα stimulation. On the other hand, metformin exerted a more robust stimulatory action on the AMPKα that was accompanied by a notable decrease in the NF-κB nuclear binding activity and a decline in the p-mTOR levels. Nevertheless, the effect of metformin on MAPK kinases was insignificant. Our results revealed that blunting p38 MAPKα and ERK1/2 activities by empagliflozin enhanced the antifibrotic effect of metformin and augmented its AMPK-induced NF-κB inactivation. SIGNIFICANCE: As diabetes is one of the most common risk factors for liver fibrosis, the use of antidiabetic drugs is expected to improve therapeutic outcome. Therefore, metformin/empagliflozin combined therapy could be promising in preventing hepatic inflammation and fibrosis via exhibiting complementary effects particularly in diabetic patients.


Assuntos
Compostos Benzidrílicos/farmacologia , Glucosídeos/farmacologia , Cirrose Hepática/tratamento farmacológico , Metformina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Adenilato Quinase/metabolismo , Animais , Compostos Benzidrílicos/metabolismo , Tetracloreto de Carbono/farmacologia , Quimioterapia Combinada/métodos , Feminino , Glucosídeos/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Cirrose Hepática/fisiopatologia , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Metformina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Cultura Primária de Células , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Eur J Pharmacol ; 822: 177-185, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29337196

RESUMO

Signaling pathways are interesting fields of study of pathogenesis and treatment trials. We elucidated the possible protective effects of nicorandil (15mg/kg/day) and theophylline (20mg/kg/day) on experimentally-induced RA, focusing on the role of JAK (Janus Kinase) / STAT (Signal Transducer and Activator of Transcription) / RANKL (Receptor Activator of Nuclear factor-Kappa B Ligand) / cytokine signaling pathway. Four sets of experiments were performed. First, effect of test agents on normal animals was evaluated. Second, effect of test agents was evaluated on Complete Freund's Adjuvant (CFA; 0.3ml, s.c.)-induced RA to investigate anti-arthritic effect. Third, effect of test agents was evaluated on growth hormone (GH; 2mg/kg/day, s.c.)-induced stimulation of JAK/STAT/RANKL/cytokine signaling pathway to investigate the role of this signaling pathway in their anti-arthritic effect. Fourth, the effect of test agents was performed on CFA/GH-induced RA. To fulfill this purpose, serum anti-citrullinated peptide antibody (ACPA), interleukin-6 (IL-6), and cartilage oligomeric matrix protein (COMP), together with tissue JAK2, STAT3, RANKL, inducible and endothelial nitric oxide synthases (iNOS and eNOS) as well as macrophage inflammatory protein (MIP1α) were estimated using ELISA, Western blotting and PCR techniques, confirmed by a histopathological study. Test agents significantly corrected JAK2, STAT3, RANKL and IL-6 values in animals receiving GH. Additionally, test agents could correct ACPA, IL-6, COMP, JAK2, STAT3, RANKL, iNOS, eNOS and MIP1α levels compared with the respective CFA or CFA/GH controls. These results conclude that nicorandil and theophylline have good anti-arthritic effects related to modulation of JAK/STAT/RANKL signaling pathway. Further clinical trials are claimed.


Assuntos
Artrite Reumatoide/prevenção & controle , Adjuvante de Freund/efeitos adversos , Janus Quinases/metabolismo , Nicorandil/farmacologia , Ligante RANK/metabolismo , Fatores de Transcrição STAT/metabolismo , Teofilina/farmacologia , Animais , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/patologia , Modelos Animais de Doenças , Feminino , Articulações/efeitos dos fármacos , Articulações/patologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...