Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36677734

RESUMO

A detailed study of charge transport in the paramagnetic phase of the cage-cluster dodecaboride Ho0.8Lu0.2B12 with an instability both of the fcc lattice (cooperative Jahn−Teller effect) and the electronic structure (dynamic charge stripes) was carried out at temperatures 1.9−300 K in magnetic fields up to 80 kOe. Four mono-domain single crystals of Ho0.8Lu0.2B12 samples with different crystal axis orientation were investigated in order to establish the singularities of Hall effect, which develop due to (i) the electronic phase separation (stripes) and (ii) formation of the disordered cage-glass state below T*~60 K. It was demonstrated that a considerable intrinsic anisotropic positive component ρanxy appears at low temperatures in addition to the ordinary negative Hall resistivity contribution in magnetic fields above 40 kOe applied along the [001] and [110] axes. A relation between anomalous components of the resistivity tensor ρanxy~ρanxx1.7 was found for H||[001] below T*~60 K, and a power law ρanxy~ρanxx0.83 for the orientation H||[110] at temperatures T < TS~15 K. It is argued that below characteristic temperature TS~15 K the anomalous odd ρanxy(T) and even ρanxx(T) parts of the resistivity tensor may be interpreted in terms of formation of long chains in the filamentary structure of fluctuating charges (stripes). We assume that these ρanxy(H||[001]) and ρanxy(H||[110]) components represent the intrinsic (Berry phase contribution) and extrinsic (skew scattering) mechanism, respectively. Apart from them, an additional ferromagnetic contribution to both isotropic and anisotropic components in the Hall signal was registered and attributed to the effect of magnetic polarization of 5d states (ferromagnetic nano-domains) in the conduction band of Ho0.8Lu0.2B12.

2.
Sci Rep ; 11(1): 6835, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767331

RESUMO

We present a study of the ground state and stability of the fractional plateau phase (FPP) with M/Msat = 1/8 in the metallic Shastry-Sutherland system TmB4. Magnetization (M) measurements show that the FPP states are thermodynamically stable when the sample is cooled in constant magnetic field from the paramagnetic phase to the ordered one at 2 K. On the other hand, after zero-field cooling and subsequent magnetization these states appear to be of dynamic origin. In this case the FPP states are closely associated with the half plateau phase (HPP, M/Msat = ½), mediate the HPP to the low-field antiferromagnetic (AF) phase and depend on the thermodynamic history. Thus, in the same place of the phase diagram both, the stable and the metastable (dynamic) fractional plateau (FP) states, can be observed, depending on the way they are reached. In case of metastable FP states thermodynamic paths are identified that lead to very flat fractional plateaus in the FPP. Moreover, with a further decrease of magnetic field also the low-field AF phase becomes influenced and exhibits a plateau of the order of 1/1000 Msat.

3.
Adv Mater ; 32(10): e1906725, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31997471

RESUMO

SmB6 has recently attracted considerable interest as a candidate for the first strongly correlated topological insulator. Such materials promise entirely new properties such as correlation-enhanced bulk bandgaps or a Fermi surface from spin excitations. Whether SmB6 and its surface states are topological or trivial is still heavily disputed however, and a solution is hindered by major disagreement between angle-resolved photoemission (ARPES) and scanning tunneling microscopy (STM) results. Here, a combined ARPES and STM experiment is conducted. It is discovered that the STM contrast strongly depends on the bias voltage and reverses its sign beyond 1 V. It is shown that the understanding of this contrast reversal is the clue to resolving the discrepancy between ARPES and STM results. In particular, the scanning tunneling spectra reflect a low-energy electronic structure at the surface, which supports a trivial origin of the surface states and the surface metallicity of SmB6 .

4.
Sci Rep ; 8(1): 10933, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30026580

RESUMO

We have investigated the rotating magnetocaloric effect (R-MCE) of TmB4 - an anisotropic magnetic system with geometrical frustration of Shastry-Sutherland type. The R-MCE was obtained from detailed temperature dependencies of heat capacity in various magnetic fields of a single crystalline sample for crystal axes orientations c || B and c ⊥ B. The received results exhibit rather complex distributions of positive and negative entropy ΔS(T, B) and temperature ΔT(T, B) differences below and above TN when the direction of the magnetic field changes between directions c || B and c ⊥ B. The calculated results were confirmed by direct R-MCE measurements which, moreover, show an interesting angular dependence of R-MCE in the ordered phase, which seems to be related with the change of the effective magnetic field along the c axis during sample rotation. Thus, our study presents a new type of magnetic refrigerant with a rather large R-MCE for low temperature magnetic refrigeration, and points to further interesting magnetic features in the ordered phase of this frustrated system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...