Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 10: 966396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110132

RESUMO

The biological synthesis of nanoparticles using fungal cultures is a promising and novel tool in nano-biotechnology. The potential culture of Trichoderma asperellum (T. asperellum) has been used to synthesize copper oxide nanoparticles (CuO NPs) in the current study. The necrotrophic infection in Brassica species is caused due to a foliar pathogen Alternaria brassicae (A. brassicae). Mycogenic copper oxide nanoparticles (M-CuO NPs) were characterized by spectroscopic and microscopic techniques such as UV-visible spectrophotometry (UV-vis), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The antifungal potential of CuO NPs was studied against A. brassicae. M-CuO NPs exhibited a surface plasmon resonance (SPR) at 303 nm, and XRD confirmed the crystalline phase of NPs. FTIR spectra confirmed the stretching of amide bonds, and the carbonyl bond indicated the presence of enzymes in T. asperellum filtrate. SEM and TEM confirmed the spherical shape of M-CuO NPs with an average size of 22 nm. Significant antifungal potential of M-CuO NPs was recorded, as it inhibited the growth of A. brassicae up to 92.9% and 80.3% in supplemented media with C-CuO NPs at 200 ppm dose. Mancozeb and propiconazole inhibited the radial growth up to 38.7% and 44.2%. SEM confirmed the morphological changes in hyphae and affected the sporulation pattern. TEM revealed hardly recognizable organelles, abnormal cytoplasmic distribution, and increased vacuolization, and light microscopy confirmed the conidia with reduced diameter and fewer septa after treatment with both types of NPs. Thus, M-CuO NPs served as a promising alternative to fungicides.

2.
Curr Microbiol ; 79(8): 244, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35796840

RESUMO

Black leaf spot of Brassica species is caused by a foliar pathogen Alternaria brassicicola (A. brassicicola), the noxious killer of mustard, cabbage, and cauliflower crops. The current investigation involved the synthesis of copper oxide nanoparticles (CuO NPs) from potential strain of Trichoderma harzianum (T. harzianum). Characterization of CuO NPs was performed by UV-vis, FTIR, XRD, SEM-EDX, and HR-TEM studies. UV-visible spectra showed an absorption peak at 275 nm. FTIR study revealed the presence of N-H bonds which could be due to the presence of enzymes and secondary metabolites released in the filtrate of T. harzianum. SEM and HR-TEM revealed the cube shape CuO NPs formed and average particle size was in the range of 31-45 nm. Poisoned food technique was used to check the antifungal efficacy of CuO NPs against A. brassicicola at various concentrations (0.025, 0.050, 0.1, and 0.15 mg/mL). In vitro assays carried on potato dextrose agar showed maximum antifungal activity at 0.15 mg/mL. The control sample have cylindrical and oblong shape conidia, while transverse septation was 2-4 in untreated population. The lower concentrations of CuO NPs (0.025 and 0.050 mg/mL) caused malformed spherical shape conidia with excessive septation, while its higher concentrations (0.1 and 0.15 mg/mL) leads to viability loss in fungal culture. Results indicated that a higher concentration of CuO NPs serve as an effective biocidal concentration for the control of phytopathogens.


Assuntos
Brassica , Nanopartículas Metálicas , Nanopartículas , Alternaria , Antifúngicos/farmacologia , Cobre/química , Nanopartículas Metálicas/química , Nanopartículas/química , Óxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...