Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Nutrients ; 16(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257114

RESUMO

Vitamin D has historically been associated with bone metabolism. However, over the years, a growing body of evidence has emerged indicating its involvement in various physiological processes that may influence the onset of numerous pathologies (cardiovascular and neurodegenerative diseases, rheumatological diseases, fertility, cancer, diabetes, or a condition of fatigue). This narrative review investigates the current knowledge of the pathophysiological mechanisms underlying fatigue and the ways in which vitamin D is implicated in these processes. Scientific studies in the databases of PubMed, Scopus, and Web of Science were reviewed with a focus on factors that play a role in the genesis of fatigue, where the influence of vitamin D has been clearly demonstrated. The pathogenic factors of fatigue influenced by vitamin D are related to biochemical factors connected to oxidative stress and inflammatory cytokines. A role in the control of the neurotransmitters dopamine and serotonin has also been demonstrated: an imbalance in the relationship between these two neurotransmitters is linked to the genesis of fatigue. Furthermore, vitamin D is implicated in the control of voltage-gated calcium and chloride channels. Although it has been demonstrated that hypovitaminosis D is associated with numerous pathological conditions, current data on the outcomes of correcting hypovitaminosis D are conflicting. This suggests that, despite the significant involvement of vitamin D in regulating mechanisms governing fatigue, other factors could also play a role.


Assuntos
Deficiência de Vitamina D , Vitamina D , Humanos , Vitaminas , Deficiência de Vitamina D/complicações , Fadiga , Neurotransmissores
2.
Front Cardiovasc Med ; 10: 1268364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38054100

RESUMO

Childhood obesity has become a worldwide epidemic in the 21st century. Its treatment is challenging and often ineffective, among others due to complex, often not obvious causes. Awareness of the existence and meaning of psychosocial and environmental risk factors seems to be an essential element in the prevention and treatment of obesity and its complications, especially arterial hypertension. In this review, we will discuss the role of that risk factors linking obesity and increased cardiovascular disorders including the role of nutritional factors (including the role of unhealthy diet, inadequate hydration), unhealthy behaviors (e.g. smoking, alcohol and drugs, sedentary behavior, low physical activity, disrupted circadian rhythms, sleep disorders, screen exposure), unfavorable social factors (such as dysfunctional family, bullying, chronic stress, mood disorders, depression, urbanization, noise, and environmental pollution), and finally differences in cardiovascular risk in girls and boys.

3.
Nutrients ; 15(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38004113

RESUMO

Although the COVID-19 pandemic appears to be diminishing, the emergence of SARS-CoV-2 variants represents a threat to humans due to their inherent transmissibility, immunological evasion, virulence, and invulnerability to existing therapies. The COVID-19 pandemic affected more than 500 million people and caused over 6 million deaths. Vaccines are essential, but in circumstances in which vaccination is not accessible or in individuals with compromised immune systems, drugs can provide additional protection. Targeting host signaling pathways is recommended due to their genomic stability and resistance barriers. Moreover, targeting host factors allows us to develop compounds that are effective against different viral variants as well as against newly emerging virus strains. In recent years, the globe has experienced climate change, which may contribute to the emergence and spread of infectious diseases through a variety of factors. Warmer temperatures and changing precipitation patterns can increase the geographic range of disease-carrying vectors, increasing the risk of diseases spreading to new areas. Climate change may also affect vector behavior, leading to a longer breeding season and more breeding sites for disease vectors. Climate change may also disrupt ecosystems, bringing humans closer to wildlife that transmits zoonotic diseases. All the above factors may accelerate the emergence of new viral epidemics. Plant-derived products, which have been used in traditional medicine for treating pathological conditions, offer structurally novel therapeutic compounds, including those with anti-viral activity. In addition, plant-derived bioactive substances might serve as the ideal basis for developing sustainable/efficient/cost-effective anti-viral alternatives. Interest in herbal antiviral products has increased. More than 50% of approved drugs originate from herbal sources. Plant-derived compounds offer diverse structures and bioactive molecules that are candidates for new drug development. Combining these therapies with conventional drugs could improve patient outcomes. Epigenetics modifications in the genome can affect gene expression without altering DNA sequences. Host cells can use epigenetic gene regulation as a mechanism to silence incoming viral DNA molecules, while viruses recruit cellular epitranscriptomic (covalent modifications of RNAs) modifiers to increase the translational efficiency and transcript stability of viral transcripts to enhance viral gene expression and replication. Moreover, viruses manipulate host cells' epigenetic machinery to ensure productive viral infections. Environmental factors, such as natural products, may influence epigenetic modifications. In this review, we explore the potential of plant-derived substances as epigenetic modifiers for broad-spectrum anti-viral activity, reviewing their modulation processes and anti-viral effects on DNA and RNA viruses, as well as addressing future research objectives in this rapidly emerging field.


Assuntos
COVID-19 , Pandemias , Humanos , Ecossistema , Melhoramento Vegetal , Antivirais/farmacologia , Antivirais/uso terapêutico
4.
Eur J Clin Nutr ; 77(12): 1105-1112, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37604969

RESUMO

Chronic non-communicable diseases are the leading cause of morbidity and mortality worldwide. Developing and implementing effective preventive strategies is the best way to ensure the overall metabolic health status of the population and to counter the global burden of non-communicable diseases. Predisposition to obesity and other non-communicable diseases is due to a combination of genetic and environmental factors throughout life, but the early environment, particularly the environment during the fetal period and the early years of life, is crucial in determining metabolic health, hence the concept of 'fetal programming'. The origins of this causal link between environmental factors and disease lie in epigenetic mechanisms. Among the environmental factors, diet plays a crucial role in this process. Substantial evidence documented the key role of macronutrients in the programming of metabolic diseases early in life. Recently, the effect of maternal micronutrient intake on offspring metabolic health in later life emerged. The purpose of this narrative review is to bring to light available evidence in the literature on the effect of maternal micronutrient status on offspring metabolic health and underlying epigenetic mechanisms that drive this link to highlight its potential role in the prevention of non-communicable diseases.


Assuntos
Micronutrientes , Doenças não Transmissíveis , Humanos , Doenças não Transmissíveis/prevenção & controle , Obesidade/epidemiologia , Suscetibilidade a Doenças , Desenvolvimento Fetal
5.
Antioxidants (Basel) ; 12(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37237913

RESUMO

Several studies have shown that the oxidative impact of pesticides is most prevalent in rural environments where they are intensively used. At different levels, pyrethroids are reported to promote neurodegeneration; they share the ability to promote oxidative stress, and to induce mitochondrial impairments, α-synuclein overexpression and neuronal cell loss. The present study evaluates the impact of early-life exposure to a commercial formulation containing deltamethrin (DM) and cypermethrin (CYP) at a dose of 1/100 LD50 (1.28 and 2.5 mg/kg, respectively). Rats aged 30 days old, treated from the 6th to the 21st day of life, were tested for brain antioxidant activity and α-synuclein levels. Four regions of the brain were analyzed: the striatum, cerebellum, cortex and hippocampus. Our data demonstrated a significant increase in catalase (CAT), superoxide dismutase (SOD) and glutathione (GSH) antioxidant levels in the brain regions compared to the controls. Pups exhibited no significant changes in protein carbonyl levels and lipid peroxidation. Striatal α-synuclein expression was significantly reduced in the rats exposed to DM + CYP, while the treatment resulted in a non-significant increase in the other brain areas. These findings indicate unexpected effects of postnatal treatment with the commercial formulation containing DM and CYP on brain redox state and α-synuclein expression, suggesting an adaptive response.

6.
J Agric Food Chem ; 71(21): 8252-8263, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37202913

RESUMO

Epigenetic mechanisms that dysregulate gene expressions may play a significant role in the development of neurological disorders. However, whether peptides can modulate epigenetic mechanisms remains elusive. This work aimed to investigate the impact of pretreatment with walnut-derived peptides─WHP and YVLLPSPK─on DNA methylation in a low-grade neuroinflammation model. The enriched KEGG pathways included oxidative phosphorylation, riboflavin metabolism, ribosome, and pyrimidine metabolism, which are associated with methylation modification by oral administration of YVLLPSPK in mice with scopolamine-induced cognitive deficits. Furthermore, when THP-1 cells (human acute monocytic leukemia cell line) were exposed to lipopolysaccharide (LPS)-induced inflammation responses, both WHP and YVLLPSPK markedly inhibited the level of Il-6 to 2.05 ± 0.76 and 1.29 ± 0.19 (p < 0.05) and also declined the mRNA expression of Mcp-1 to 1.64 ± 0.02 and 3.29 ± 1.21 (p < 0.01), respectively. Meanwhile, YVLLPSPK decreased the activities of DNA methyltransferases (DNMTs) to 1.03 ± 0.02 and 1.20 ± 0.31 (p < 0.05) based on Dnmt3b and Tet2, respectively. The results indicated that YVLLPSPK modulated DNA methylation in embryonic and neural precursor cells in creating new methylation patterns. Further trials are needed to assess the mechanisms underlying DNA methylation changes through peptides in the pathophysiology of neurological disorders.


Assuntos
Juglans , Células-Tronco Neurais , Humanos , Camundongos , Animais , Juglans/química , Doenças Neuroinflamatórias , Proteômica , Células-Tronco Neurais/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Peptídeos/metabolismo , Metilação de DNA , Epigênese Genética , Hipocampo/metabolismo
8.
Antioxidants (Basel) ; 11(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36290743

RESUMO

Antioxidant peptides extracted from natural foods have been studied for their potential use in the development of additives, nutraceuticals, and therapeutic agents. Nut proteins are considered an excellent source of plant-derived proteins for the human diet, due to their high protein content and digestibility of up to 86.22%. Furthermore, compared with grain and soybean proteins, nut proteins have a special amino acid composition, which makes their protein structure different, and promotes their disparate functional characteristics and great bioactivity potential. This review presents the most remarkable studies on antioxidant peptides from nuts, to gain insights into feasible production methods, different evaluation indexes within in vivo or in vitro systems, high bioavailability, and the complex structure-activity relationship resulting from the particularity of their protein structure and amino acid composition. Previously published studies mainly focused on the effects of the production methods/processes of nut-derived peptides on antioxidant activity, and proved that nut-extracted antioxidant peptides can resist the degradation of acid, alkali, and gastrointestinal enzymes, have high antioxidant activity in vitro and in vivo, and also have the potential to cross small intestinal epithelial cells in a stable and integral manner. However, the structure-activity relationship of antioxidant peptides from nuts has not been fully established, and the structure information of antioxidant peptides obtained from various nut protein sources is still unclear. The findings presented in this review can be used to provide the theoretical basis for the design and production of nut-derived antioxidant peptides.

9.
Microorganisms ; 10(7)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35888997

RESUMO

Probiotic consumption is recognized as being generally safe and correlates with multiple and valuable health benefits. However, the mechanism by which it helps detoxify the body and its anti-carcinogenic and antimutagenic potential is less discussed. A widely known fact is that globalization and mass food production/cultivation make it impossible to keep all possible risks under control. Scientists associate the multitude of diseases in the days when we live with these risks that threaten the population's safety in terms of food. This review aims to explore whether the use of probiotics may be a safe, economically viable, and versatile tool in biodetoxification despite the numerous risks associated with food and the limited possibility to evaluate the contaminants. Based on scientific data, this paper focuses on the aspects mentioned above and demonstrates the probiotics' possible risks, as well as their anti-carcinogenic and antimutagenic potential. After reviewing the probiotic capacity to react with pathogens, fungi infection, mycotoxins, acrylamide toxicity, benzopyrene, and heavy metals, we can conclude that the specific probiotic strain and probiotic combinations bring significant health outcomes. Furthermore, the biodetoxification maximization process can be performed using probiotic-bioactive compound association.

10.
Front Biosci (Landmark Ed) ; 27(6): 172, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35748248

RESUMO

BACKGROUND: Peripheral alterations of mitochondrial DNA copy number (mtDNAcn) in obesity and associated co-morbidities have been previously shown. Furthermore, the possibility that methylation could occur in the mtDNA (in particular in the displacement loop, D-Loop) and regulate its functions has been raised. However, limited data about mtDNA methylation in adipose tissue are currently available. Since a strict crosstalk between the nucleus and mitochondria exists, especially in terms of the one-carbon cycle (that supports methylation reactions in the cell), we investigated methylation in selected areas of the mitochondrial and nuclear DNA and their expression in visceral adipose tissue (VAT) samples of patients with severe obesity. METHODS: VAT biopsies were collected from surgery patients to isolate DNA and RNA. Gene expression and mtDNAcn were assessed through qPCR. DNA methylation in both nuclear and mitochondrial areas were determined through bisulfite pyrosequencing. RESULTS: Methylation levels of the mtDNA were only marginally associated with the obesity degree (higher D-Loop methylation in severe obesity) and were not correlated with mtDNAcn. A significant correlation between D-Loop methylation and LINE-1 methylation was observed in VAT samples, and this was independent from the obesity degree. A progressive reduction of mtDNAcn and increase in NRF1 expression levels were measured in VAT in severe obesity. NRF1 expression was directly correlated with PPARG and MTHFR expression levels, while mtDNAcn was associated to TFAM expression. The correlation between mtDNAcn and TFAM expression was affected by the obesity status. CONCLUSIONS: This evidence supports the hypothesis that mtDNA alterations occur in obesity and a complex dynamic correlation between mitochondrial and nuclear DNA methylation exists, highlighting the need for further investigations.


Assuntos
DNA Mitocondrial , Obesidade Mórbida , Variações do Número de Cópias de DNA , Metilação de DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Gordura Intra-Abdominal/metabolismo , Mitocôndrias/metabolismo , Obesidade Mórbida/genética , Obesidade Mórbida/metabolismo
11.
Mol Nutr Food Res ; 66(13): e2200003, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35490412

RESUMO

SCOPE: Mitochondrial DNA copy number (mtDNAcn) and its methylation level in the D-loop area have been correlated with metabolic health and are suggested to vary in response to environmental stimuli, including diet. Circulating levels of trimethylamine-n-oxide (TMAO), which is an oxidative derivative of the trimethylamine (TMA) produced by the gut microbiome from dietary precursors, have been associated with chronic diseases and are suggested to have an impact on mitochondrial dynamics. This study is aimed to investigate the relationship between diet, TMA, TMAO, and mtDNAcn, as well as DNA methylation. METHODS AND RESULTS: Two hundred subjects with extreme (healthy and unhealthy) dietary patterns are recruited. Dietary records are collected to assess their nutrient intake and diets' quality (Healthy Eating Index). Blood levels of TMA and TMAO, circulating levels of TMA precursors and their dietary intakes are measured. MtDNAcn, nuclear DNA methylation long interspersed nuclear element 1 (LINE-1), and strand-specific D-loop methylation levels are assessed. There is no association between dietary patterns and mtDNAcn. The TMAO/TMA ratio is negatively correlated with d-loop methylation levels but positively with mtDNAcn. CONCLUSIONS: These findings suggest a potential association between TMA metabolism and mitochondrial dynamics (and mtDNA), indicating a new avenue for further research.


Assuntos
DNA Mitocondrial , Microbioma Gastrointestinal , DNA Mitocondrial/genética , Dieta , Humanos , Metilaminas , Mitocôndrias/metabolismo
12.
Antioxidants (Basel) ; 11(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35204077

RESUMO

New hydrophobic derivatives of cinnamic and hydroxycinnamic (ferulic and cumaric) acids obtained by chemical esterification of the carboxylic group with C10 linear alcohol were studied to evaluate their antioxidant capacity toward the superoxide anion and hydrogen peroxide in physiological buffer and in extra-virgin olive oil (EVO) or Nigella sativa oils. Results showed that cumaric and ferulic acids have higher antioxidants activity against superoxide anion and hydrogen peroxide than the other compounds. Cumaric acid and its C10-ester derivative were selected to be incorporated into EVO or Nigella sativa oil-based emulsions. The prepared emulsions had a comparable particle size distribution (in the range of 3-4 µm) and physical stability at least up to three months. Nigella sativa oil-based emulsions loaded with cumaric acid or its C10-ester showed a higher capacity to scavenger superoxide anion and hydrogen peroxide than EVO oil-based emulsions. In conclusion, cumaric acid or its C10-ester could promote the antioxidant properties of Nigella sativa oil when formulated as emulsions.

13.
Oxid Med Cell Longev ; 2022: 9171684, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35132354

RESUMO

Mitochondrial DNA copy number (mtDNAcn) has been proposed for use as a surrogate biomarker of mitochondrial health, and evidence suggests that mtDNA might be methylated. Intermediates of the one-carbon cycle (1CC), which is duplicated in the cytoplasm and mitochondria, have a major role in modulating the impact of diet on the epigenome. Moreover, epigenetic pathways and the redox system are linked by the metabolism of glutathione (GSH). In a cohort of 101 normal-weight and 97 overweight/obese subjects, we evaluated mtDNAcn and methylation levels in both mitochondrial and nuclear areas to test the association of these marks with body weight, metabolic profile, and availability of 1CC intermediates associated with diet. Body composition was associated with 1CC intermediate availability. Reduced levels of GSH were measured in the overweight/obese group (p = 1.3∗10-5). A high BMI was associated with lower LINE-1 (p = 0.004) and nominally lower methylenetetrahydrofolate reductase (MTHFR) gene methylation (p = 0.047). mtDNAcn was lower in overweight/obese subjects (p = 0.004) and independently correlated with MTHFR methylation levels (p = 0.005) but not to LINE-1 methylation levels (p = 0.086). DNA methylation has been detected in the light strand but not in the heavy strand of the mtDNA. Although mtDNA methylation in the light strand did not differ between overweight/obese and normal-weight subjects, it was nominally correlated with homocysteine levels (p = 0.035) and MTHFR methylation (p = 0.033). This evidence suggests that increased body weight might perturb mitochondrial-nuclear homeostasis affecting the availability of nutrients acting as intermediates of the one-carbon cycle.


Assuntos
Carbono/metabolismo , DNA Mitocondrial/sangue , DNA Mitocondrial/genética , Epigênese Genética , Obesidade/sangue , Obesidade/genética , Transdução de Sinais/genética , Adulto , Biomarcadores/sangue , Composição Corporal , Índice de Massa Corporal , Estudos de Casos e Controles , Estudos de Coortes , Variações do Número de Cópias de DNA , Metilação de DNA , Feminino , Glutationa/sangue , Humanos , Masculino , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Mitocôndrias/metabolismo , Obesidade/epidemiologia , Polônia/epidemiologia , Adulto Jovem
14.
Nutrients ; 13(11)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34836431

RESUMO

Obesity has become a major epidemic in the 21st century. It increases the risk of dyslipidemia, hypertension, and type 2 diabetes, which are known cardiometabolic risk factors and components of the metabolic syndrome. Although overt cardiovascular (CV) diseases such as stroke or myocardial infarction are the domain of adulthood, it is evident that the CV continuum begins very early in life. Recognition of risk factors and early stages of CV damage, at a time when these processes are still reversible, and the development of prevention strategies are major pillars in reducing CV morbidity and mortality in the general population. In this review, we will discuss the role of well-known but also novel risk factors linking obesity and increased CV risk from prenatal age to adulthood, including the role of perinatal factors, diet, nutrigenomics, and nutri-epigenetics, hyperuricemia, dyslipidemia, hypertension, and cardiorespiratory fitness. The importance of 'tracking' of these risk factors on adult CV health is highlighted and the economic impact of childhood obesity as well as preventive strategies are discussed.


Assuntos
Fatores de Risco Cardiometabólico , Doenças Cardiovasculares/etiologia , Síndrome Metabólica/etiologia , Obesidade Infantil/fisiopatologia , Adolescente , Adulto , Aptidão Cardiorrespiratória , Doenças Cardiovasculares/prevenção & controle , Criança , Pré-Escolar , Dieta/efeitos adversos , Epigenômica , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Síndrome Metabólica/prevenção & controle , Nutrigenômica , Obesidade Infantil/complicações , Obesidade Infantil/prevenção & controle , Gravidez , Fenômenos Fisiológicos da Nutrição Pré-Natal , Adulto Jovem
15.
Antioxidants (Basel) ; 10(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206632

RESUMO

Dietary lipids have a major role in nutrition, not only for their fuel value, but also as essential and bioactive nutrients. This narrative review aims to describe the current evidence on nutrigenomic effects of dietary lipids. Firstly, the different chemical and biological properties of fatty acids contained both in plant- and animal-based food are illustrated. A description of lipid bioavailability, bioaccessibility, and lipotoxicity is provided, together with an overview of the modulatory role of lipids as pro- or anti-inflammatory agents. Current findings concerning the metabolic impact of lipids on gene expression, epigenome, and gut microbiome in animal and human studies are summarized. Finally, the effect of the individual's genetic make-up on lipid metabolism is described. The main goal is to provide an overview about the interaction between dietary lipids and the genome, by identifying and discussing recent scientific evidence, recognizing strengths and weaknesses, to address future investigations and fill the gaps in the current knowledge on metabolic impact of dietary fats on health.

16.
FASEB J ; 35(7): e21694, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34165220

RESUMO

Among cardiovascular disease (CVD) biomarkers, the mitochondrial DNA copy number (mtDNAcn) is a promising candidate. A growing attention has been also dedicated to trimethylamine-N-oxide (TMAO), an oxidative derivative of the gut metabolite trimethylamine (TMA). With the aim to identify biomarkers predictive of CVD, we investigated TMA, TMAO, and mtDNAcn in a population of 389 coronary artery disease (CAD) patients and 151 healthy controls, in association with established risk factors for CVD (sex, age, hypertension, smoking, diabetes, glomerular filtration rate [GFR]) and troponin, an established marker of CAD. MtDNAcn was significantly lower in CAD patients; it correlates with GFR and TMA, but not with TMAO. A biomarker including mtDNAcn, sex, and hypertension (but neither TMA nor TMAO) emerged as a good predictor of CAD. Our findings support the mtDNAcn as a promising plastic biomarker, useful to monitor the exposure to risk factors and the efficacy of preventive interventions for a personalized CAD risk reduction.


Assuntos
Biomarcadores/sangue , Doenças Cardiovasculares/diagnóstico , Variações do Número de Cópias de DNA , DNA Mitocondrial/sangue , Trato Gastrointestinal/metabolismo , Metilaminas/sangue , Idoso , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/genética , Estudos de Casos e Controles , Estudos de Coortes , DNA Mitocondrial/genética , Feminino , Humanos , Masculino , Fatores de Risco
17.
J Agric Food Chem ; 69(9): 2758-2772, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33591165

RESUMO

Mitophagy has a pivotal protective function in the pathogenesis of neurological disorders. However, the mechanism of its modulation remains elusive, especially in PINK1-mediated mitophagy. Here, we investigated the neuroprotective effects of a walnut-derived peptide, YVLLPSPK, against scopolamine-induced cognitive deficits in mice and explored the underlying PINK1-mediated mitophagy mechanisms in H2O2-treated HT-22 cells. Using the Morris water maze, we showed that YVLLPSPK relieved the cognitive deficiency by alleviating oxidative stress. Mitochondrial morphology was observed in mice hippocampal tissues using transmission electron microscopy (TEM). Both Western blot and immunofluorescence analysis illustrated YVLLPSPK promoted the expression of mitophagy-related proteins and activated the NRF2/KEAP1/HO-1 pathway. Subsequently, an NRF2 inhibitor (ML385) was used to verify the contribution of the YVLLPSPK-regulated NRF2/KEAP1/HO-1 pathway in PINK1-mediated mitophagy in H2O2-treated HT-22 cells. These data suggested that YVLLPSPK improved learning and memory in scopolamine-induced cognitive-impaired mice through a mechanism associated with PINK1-mediated mitophagy via the NRF2/KEAP1/HO-1 pathway.


Assuntos
Juglans , Mitofagia , Animais , Heme Oxigenase-1 , Peróxido de Hidrogênio , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteínas de Membrana , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
18.
Biomedicines ; 8(12)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302583

RESUMO

Perinatal life represents a delicate phase of development where stimuli of all sorts, coming to or from the mother, can influence the programming of the future baby's health. These stimuli may have consequences that persist throughout adulthood. Nuclear receptor related 1 protein (NURR1), a transcription factor with a critical role in the development of the dopaminergic neurons in the midbrain, mediates the response to stressful environmental stimuli in the perinatal period. During pregnancy, low-grade inflammation triggered by maternal obesity, hyperinsulinemia or vaginal infections alters NURR1 expression in human gestational tissues. A similar scenario is triggered by exposure to neurotoxic compounds, which are associated with NURR1 epigenetic deregulation in the offspring, with potential intergenerational effects. Since these alterations have been associated with an increased risk of developing late-onset diseases in children, NURR1, alone, or in combination with other molecular markers, has been proposed as a new prognostic tool and a potential therapeutic target for several pathological conditions. This narrative review describes perinatal stress associated with NURR1 gene deregulation, which is proposed here as a mediator of late-onset consequences of early life events.

19.
Int J Mol Sci ; 21(19)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33028024

RESUMO

It is known and accepted that the gut microbiota composition of an organism has an impact on its health. Many studies deal with this topic, the majority discussing gastrointestinal health. Adenomatous colon polyps have a high prevalence as colon cancer precursors, but in many cases, they are hard to diagnose in their early stages. Gut microbiota composition correlated with the presence of adenomatous colon polyps may be a noninvasive and efficient tool for diagnosis with a high impact on human wellbeing and favorable health care costs. This review is meant to analyze the gut microbiota correlated with the presence of adenomatous colon polyps as the first step for early diagnosis, prophylaxis, and treatment.


Assuntos
Pólipos Adenomatosos/microbiologia , Neoplasias do Colo/diagnóstico , Pólipos do Colo/microbiologia , Microbioma Gastrointestinal/genética , Pólipos Adenomatosos/diagnóstico , Pólipos Adenomatosos/genética , Colo/microbiologia , Colo/patologia , Doenças do Colo/diagnóstico , Doenças do Colo/genética , Doenças do Colo/microbiologia , Neoplasias do Colo/genética , Neoplasias do Colo/microbiologia , Pólipos do Colo/diagnóstico , Pólipos do Colo/genética , Colonoscopia , Humanos
20.
Sci Rep ; 10(1): 18675, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33122777

RESUMO

The early atherosclerotic lesions develop by the accumulation of arterial foam cells derived mainly from cholesterol-loaded macrophages. Therefore, cholesterol and cholesteryl ester transfer protein (CETP) have been considered as causative in atherosclerosis. Moreover, recent studies indicate the role of trimethylamine N-oxide (TMAO) in development of cardiovascular disease (CVD). The current study aimed to investigate the association between TMAO and CETP polymorphisms (rs12720922 and rs247616), previously identified as a genetic determinant of circulating CETP, in a population of coronary artery disease (CAD) patients (n = 394) and control subjects (n = 153). We also considered age, sex, trimethylamine (TMA) levels and glomerular filtration rate (GFR) as other factors that can potentially play a role in this complex picture. We found no association of TMAO with genetically determined CETP in a population of CAD patients and control subjects. Moreover, we noticed no differences between CAD patients and control subjects in plasma TMAO levels. On the contrary, lower levels of TMA in CAD patients respect to controls were observed. Our results indicated a significant correlation between GFR and TMAO, but not TMA. The debate whether TMAO can be a harmful, diagnostic or protective marker in CVD needs to be continued.


Assuntos
Colesterol/metabolismo , Metilaminas/metabolismo , Idoso , Transporte Biológico , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/metabolismo , Estudos de Casos e Controles , Proteínas de Transferência de Ésteres de Colesterol/sangue , Proteínas de Transferência de Ésteres de Colesterol/genética , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Estudos Transversais , Feminino , Taxa de Filtração Glomerular , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...