Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5929, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009604

RESUMO

Human iPSC-derived cardiomyocytes (hiPSC-CMs) have proven invaluable for cardiac disease modeling and regeneration. Challenges with quality, inter-batch consistency, cryopreservation and scale remain, reducing experimental reproducibility and clinical translation. Here, we report a robust stirred suspension cardiac differentiation protocol, and we perform extensive morphological and functional characterization of the resulting bioreactor-differentiated iPSC-CMs (bCMs). Across multiple different iPSC lines, the protocol produces 1.2E6/mL bCMs with ~94% purity. bCMs have high viability after cryo-recovery (>90%) and predominantly ventricular identity. Compared to standard monolayer-differentiated CMs, bCMs are more reproducible across batches and have more mature functional properties. The protocol also works with magnetically stirred spinner flasks, which are more economical and scalable than bioreactors. Minor protocol modifications generate cardiac organoids fully in suspension culture. These reproducible, scalable, and resource-efficient approaches to generate iPSC-CMs and organoids will expand their applications, and our benchmark data will enable comparison to cells produced by other cardiac differentiation protocols.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Organoides , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Organoides/citologia , Técnicas de Cultura de Células/métodos , Reprodutibilidade dos Testes , Células Cultivadas , Criopreservação/métodos
2.
Mater Today Bio ; 23: 100818, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37810749

RESUMO

Heart and kidney communicate with one another in an interdependent relationship and they influence each other's behavior reciprocally, as pathological changes in one organ can damage the other. Although independent human in vitro models for heart and kidney exist, they do not capture their dynamic crosstalk. We have developed a microfluidic system which can be used to study heart and kidney interaction in vitro. Cardiac microtissues (cMTs) and kidney organoids (kOs) derived from human induced pluripotent stem cells (hiPSCs) were generated and loaded into two separated communicating chambers of a perfusion chip. Static culture conditions were compared with dynamic culture under unidirectional flow. Tissue viability was maintained for minimally 72 h under both conditions, as indicated by the presence of sarcomeric structures coupled with beating activity in cMTs and the presence of nephron structures and albumin uptake in kOs. We concluded that this system enables the study of human cardiac and kidney organoid interaction in vitro while controlling parameters like fluidic flow speed and direction. Together, this "cardiorenal-unit" provides a new in vitro model to study the cardiorenal axis and it may be further developed to investigate diseases involving both two organs and their potential treatments.

3.
Front Cardiovasc Med ; 9: 889553, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694669

RESUMO

Heart and kidney diseases cause high morbidity and mortality. Heart and kidneys have vital functions in the human body and, interestingly, reciprocally influence each other's behavior: pathological changes in one organ can damage the other. Cardiorenal syndrome (CRS) is a group of disorders in which there is combined dysfunction of both heart and kidney, but its underlying biological mechanisms are not fully understood. This is because complex, multifactorial, and dynamic mechanisms are likely involved. Effective treatments are currently unavailable, but this may be resolved if more was known about how the disease develops and progresses. To date, CRS has actually only been modeled in mice and rats in vivo. Even though these models can capture cardiorenal interaction, they are difficult to manipulate and control. Moreover, interspecies differences may limit extrapolation to patients. The questions we address here are what would it take to model CRS in vitro and how far are we? There are already multiple independent in vitro (human) models of heart and kidney, but none have so far captured their dynamic organ-organ crosstalk. Advanced in vitro human models can provide an insight in disease mechanisms and offer a platform for therapy development. CRS represents an exemplary disease illustrating the need to develop more complex models to study organ-organ interaction in-a-dish. Human induced pluripotent stem cells in combination with microfluidic chips are one powerful tool with potential to recapitulate the characteristics of CRS in vitro. In this review, we provide an overview of the existing in vivo and in vitro models to study CRS, their limitations and new perspectives on how heart-kidney physiological and pathological interaction could be investigated in vitro for future applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...