Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36992013

RESUMO

Global navigation satellite systems (GNSSs) and ultra-wideband (UWB) ranging are two central research topics in the field of positioning and navigation. In this study, a GNSS/UWB fusion method is investigated in GNSS-challenged environments or for the transition between outdoor and indoor environments. UWB augments the GNSS positioning solution in these environments. GNSS stop-and-go measurements were carried out simultaneously to UWB range observations within the network of grid points used for testing. The influence of UWB range measurements on the GNSS solution is examined with three weighted least squares (WLS) approaches. The first WLS variant relies solely on the UWB range measurements. The second approach includes a measurement model that utilizes GNSS only. The third model fuses both approaches into a single multi-sensor model. As part of the raw data evaluation, static GNSS observations processed with precise ephemerides were used to define the ground truth. In order to extract the grid test points from the collected raw data in the measured network, clustering methods were applied. A self-developed clustering approach extending density-based spatial clustering of applications with noise (DBSCAN) was employed for this purpose. The results of the GNSS/UWB fusion approach show an improvement in positioning performance compared to the UWB-only approach, in the range of a few centimeters to the decimeter level when grid points were placed within the area enclosed by the UWB anchor points. However, grid points outside this area indicated a decrease in accuracy in the range of about 90 cm. The precision generally remained within 5 cm for points located within the anchor points.

2.
Sensors (Basel) ; 19(23)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795507

RESUMO

Cooperative positioning (CP) utilises information sharing among multiple nodes to enable positioning in Global Navigation Satellite System (GNSS)-denied environments. This paper reports the performance of a CP system for pedestrians using Ultra-Wide Band (UWB) technology inGNSS-denied environments. This data set was collected as part of a benchmarking measurementcampaign carried out at the Ohio State University in October 2017. Pedestrians were equippedwith a variety of sensors, including two different UWB systems, on a specially designed helmetserving as a mobile multi-sensor platform for CP. Different users were walking in stop-and-go modealong trajectories with predefined checkpoints and under various challenging environments. Inthe developed CP network, both Peer-to-Infrastructure (P2I) and Peer-to-Peer (P2P) measurementsare used for positioning of the pedestrians. It is realised that the proposed system can achievedecimetre-level accuracies (on average, around 20 cm) in the complete absence of GNSS signals,provided that the measurements from infrastructure nodes are available and the network geometryis good. In the absence of these good conditions, the results show that the average accuracydegrades to meter level. Further, it is experimentally demonstrated that inclusion of P2P cooperativerange observations further enhances the positioning accuracy and, in extreme cases when only oneinfrastructure measurement is available, P2P CP may reduce positioning errors by up to 95%. Thecomplete test setup, the methodology for development, and data collection are discussed in thispaper. In the next version of this system, additional observations such as theWi-Fi, camera, and othersignals of opportunity will be included.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...