Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Membr Biol ; 26(5): 293-308, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19742379

RESUMO

Kat1 is a highly selective inward-rectifying K(+) channel that opens for extended periods under conditions of extreme hyperpolarization. Over 200 point mutants in the pore region of the Kat1 K(+) channel were generated and examined in the yeast Saccharomyces cerevisiae and Xenopus oocytes to assess the effect of the mutations on ion selectivity. Substitutions at the tyrosine of the signature sequence G-Y-G resulted in the most significant alterations in ion selectivity, consistent with its role in the selectivity filter. However, greater than 80% of the mutations throughout the greater pore region also conferred a defect in selectivity demonstrating that the entire pore of Kat1 contributes to the ion selectivity of this channel. Surprisingly, we identified a novel class of mutant channel that conferred enhanced selectivity of K(+) over Na(+). Mutants of this class frequently displayed sensitivity to the competing ion Cs(+). This finding has led us to speculate that the Kat1 channel pore has evolved to balance not only K(+)/Na(+) selectivity, but selectivity over Cs(+), and possibly a wide spectrum of potential competing ions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Césio/química , Césio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oócitos/química , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Sódio/química , Sódio/metabolismo , Especificidade por Substrato , Tetraetilamônio/química , Xenopus laevis
2.
Mol Membr Biol ; 25(2): 164-76, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18307103

RESUMO

The Saccharomyces cerevisiae integral membrane protein Ssy1p functions with Ssy5p and Ptr3p to sense extracellular amino acids. Signal transduction leads to processing and nuclear localization of Stp1p and Stp2p, transcriptional activators of many amino acid transporter genes. Ssy1p is structurally related to amino acid permeases, but unable to transport amino acids. We isolated SSY1 mutants that constitutively activate a target promoter. Dose-response analysis showed that the mutants are hyperresponsive, requiring less inducer to give strong signaling than does the wild type. Another mutant (Ssy1p(T639I)) turned out to be hyporesponsive, i.e., it signals only at high inducer concentration. In accordance with a transporter-like mechanism for Ssy1p function we suggest that the hyper- and hyporesponsive mutant forms differ from the wild-type sensor by being more and less inclined, respectively, to adopt an outward-facing, signaling conformation. Coordinate conformational dynamics of the sensor complex was supported by additive effects of combinations of constitutive SSY1, PTR3 and SSY5 alleles. Assuming structural similarity of Ssy1p to the distantly related bacterial leucine transporter LeuT(Aa), several activating substitutions were located near the substrate binding site while others were on the periphery of Ssy1p. We suggest analyses of transporter-like sensors as an approach to understand key features of transporters.


Assuntos
Aminoácidos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mutantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/genética , Regulação Fúngica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Mutantes/isolamento & purificação , Mutação/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Transdução de Sinais , Fatores de Transcrição/metabolismo
3.
J Cell Biol ; 173(3): 327-31, 2006 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-16651382

RESUMO

Recent studies of Saccharomyces cerevisiae revealed sensors that detect extracellular amino acids (Ssy1p) or glucose (Snf3p and Rgt2p) and are evolutionarily related to the transporters of these nutrients. An intriguing question is whether the evolutionary transformation of transporters into nontransporting sensors reflects a homeostatic capability of transporter-like sensors that could not be easily attained by other types of sensors. We previously found SSY1 mutants with an increased basal level of signaling and increased apparent affinity to sensed extracellular amino acids. On this basis, we propose and test a general model for transporter- like sensors in which occupation of a single, central ligand binding site increases the activation energy needed for the conformational shift between an outward-facing, signaling conformation and an inward-facing, nonsignaling conformation. As predicted, intracellular leucine accumulation competitively inhibits sensing of extracellular amino acids. Thus, a single sensor allows the cell to respond to changes in nutrient availability through detection of the relative concentrations of intra- and extracellular ligand.


Assuntos
Proteínas de Membrana/fisiologia , Modelos Biológicos , Receptores de Aminoácido/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , 2-Isopropilmalato Sintase/metabolismo , Algoritmos , Peptídeos e Proteínas de Sinalização Intracelular , Leucina/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/fisiologia , Mutação , Proteínas Nucleares/metabolismo , Fenilalanina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores de Aminoácido/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
4.
Eukaryot Cell ; 4(6): 1116-24, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15947203

RESUMO

Amino acids in the environment of Saccharomyces cerevisiae can transcriptionally activate a third of the amino acid permease genes through a signal that originates from the interaction between the extracellular amino acids and an integral plasma membrane protein, Ssy1p. Two plasma membrane-associated proteins, Ptr3p and Ssy5p, participate in the sensing, which results in cleavage of the transcription factors Stp1p and Stp2p, removing 10 kDa of the N terminus of each of them. This confers the transcription factors with the ability to gain access to the nucleus and activate transcription of amino acid permease genes. To extend our understanding of the role of Ptr3p and Ssy5p in this amino acid sensing process, we have isolated constitutive gain-of-function mutants in these two components by using a genetic screening in which potassium uptake is made dependent on amino acid signaling. Mutants which exhibit inducer-independent processing of Stp1p and activation of the amino acid permease gene AGP1 were obtained. For each component of the SPS complex, constitutive signaling by a mutant allele depended on the presence of wild-type alleles of the other two components. Despite the signaling in the absence of inducer, the processing of Stp1p was more complete in the presence of inducer. Dose response assays showed that the median effective concentration for Stp1p processing in the mutant cells was decreased; i.e., a lower inducer concentration is needed for signaling in the mutant cells. These results suggest that the three sensor components interact intimately in a complex rather than in separate reactions and support the notion that the three components function as a complex.


Assuntos
Aminoácidos/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana/química , Proteínas de Membrana/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
5.
Eukaryot Cell ; 2(5): 922-9, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14555474

RESUMO

Sensing of extracellular amino acids results in transcriptional induction of amino acid permease genes in yeast. Ssy1, a membrane protein resembling amino acid permeases, is required for signaling but is apparently unable to transport amino acids and is thus believed to be a sensor. By using a novel genetic screen in which potassium uptake was made dependent on amino acid signaling, we obtained gain-of-function mutations in SSY1. Some alleles confer inducer-independent signaling; others increase the apparent affinity for inducers. The results reveal that amino acid transport is not required for signaling and support the notion that sensing by Ssy1 occurs via its direct interaction with extracellular amino acids.


Assuntos
Proteínas de Membrana/fisiologia , Mutação , Canais de Potássio Corretores do Fluxo de Internalização , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais/fisiologia , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Aminoácidos/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Proteínas de Transporte de Cátions/genética , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Citrulina/farmacologia , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular , Óperon Lac/genética , Proteínas de Membrana/genética , Mutagênese Sítio-Dirigida , Fenótipo , Proteínas de Plantas , Canais de Potássio/genética , Canais de Potássio/fisiologia , Cloreto de Potássio/farmacologia , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Transdução de Sinais/genética , Transformação Genética , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
6.
J Biol Chem ; 278(35): 32692-701, 2003 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-12788914

RESUMO

Hsp90 complexes contain a class of co-chaperones characterized by a tetratricopeptide repeat (TPR) domain, which mediates binding to a carboxyl-terminal EEVD region in Hsp90. Among Hsp90 TPR co-chaperones in Saccharomyces cerevisiae, only Cns1 is essential. The amino terminus of Cns1, which harbors the TPR domain, is sufficient for viability when overexpressed. In a screen for temperature-sensitive alleles of CNS1, we identified mutations resulting in substitutions of conserved residues in the TPR domain. Mutations in CNS1 disrupt in vitro and in vivo interaction with Hsp90 and reduce Hsp90 function, indicating that Cns1 is a bona fide co-chaperone. Genetic interactions between CNS1 and another Hsp90 co-chaperone, CPR7, suggest that the two co-chaperones share an essential role in the cell. Although both the TPR and the isomerase domains of the cyclophilin Cpr7 are required for viability of cns1 mutant cells, this requirement does not depend on the catalytic function of the isomerase domain. Instead, hydrophilic residues on the surface of this domain appear to be important for the common Cns1.Cpr7 function. Although both co-chaperones interact with Hsp90 primarily through the carboxyl terminus (EEVD), Cns1 and Cpr7 are mostly found in complexes distinct from Hsp90. EEVD is required for normal growth in cns1 mutant cells, demonstrating for the first time in vivo requirement for this conserved region of Hsp90. Overall, our findings reveal a considerable degree of complexity in the interactions not only between Hsp90 and its co-chaperones, but also among the co-chaperones themselves.


Assuntos
Proteínas de Transporte/metabolismo , Ciclofilinas , Proteínas de Choque Térmico HSP90/química , Chaperonas Moleculares/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Western Blotting , Divisão Celular , Sobrevivência Celular , Centrifugação , Cromatografia em Gel , Peptidil-Prolil Isomerase F , Escherichia coli/metabolismo , Genótipo , Glutationa Transferase/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Mutação , Fenótipo , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Temperatura , beta-Galactosidase/metabolismo
7.
EMBO J ; 22(5): 1158-67, 2003 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-12606580

RESUMO

Hsp90 is required for the normal activity of steroid receptors, and in steroid receptor complexes it is typically bound to one of the immunophilin-related co-chaperones: the peptidylprolyl isomerases FKBP51, FKBP52 or CyP40, or the protein phosphatase PP5. The physiological roles of the immunophilins in regulating steroid receptor function have not been well defined, and so we examined in vivo the influences of immunophilins on hormone-dependent gene activation in the Saccharomyces cerevisiae model for glucocorticoid receptor (GR) function. FKBP52 selectively potentiates hormone-dependent reporter gene activation by as much as 20-fold at limiting hormone concentrations, and this potentiation is readily blocked by co-expression of the closely related FKBP51. The mechanism for potentiation is an increase in GR hormone-binding affinity that requires both the Hsp90-binding ability and the prolyl isomerase activity of FKBP52.


Assuntos
Glucocorticoides/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Peptidilprolil Isomerase/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Genes Reporter , Humanos , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ligação Proteica , Conformação Proteica , Receptores de Glucocorticoides/metabolismo , Saccharomyces cerevisiae/fisiologia , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...