Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 1372, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170097

RESUMO

Although offshore freshened groundwater (OFG) systems have been documented in numerous continental margins worldwide, their geometry, controls and emplacement dynamics remain poorly constrained. Here we integrate controlled-source electromagnetic, seismic reflection and borehole data with hydrological modelling to quantitatively characterise a previously unknown OFG system near Canterbury, New Zealand. The OFG system consists of one main, and two smaller, low salinity groundwater bodies. The main body extends up to 60 km from the coast and a seawater depth of 110 m. We attribute along-shelf variability in salinity to permeability heterogeneity due to permeable conduits and normal faults, and to recharge from rivers during sea level lowstands. A meteoric origin of the OFG and active groundwater migration from onshore are inferred. However, modelling results suggest that the majority of the OFG was emplaced via topographically-driven flow during sea level lowstands in the last 300 ka. Global volumetric estimates of OFG will be significantly revised if active margins, with steep coastal topographies like the Canterbury margin, are considered.

2.
IEEE Trans Vis Comput Graph ; 23(8): 1896-1909, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27333605

RESUMO

We present an analysis and visualization prototype using the concept of a flow topology graph (FTG) for characterization of flow in constrained networks, with a focus on discrete fracture networks (DFN), developed collaboratively by geoscientists and visualization scientists. Our method allows users to understand and evaluate flow and transport in DFN simulations by computing statistical distributions, segment paths of interest, and cluster particles based on their paths. The new approach enables domain scientists to evaluate the accuracy of the simulations, visualize features of interest, and compare multiple realizations over a specific domain of interest. Geoscientists can simulate complex transport phenomena modeling large sites for networks consisting of several thousand fractures without compromising the geometry of the network. However, few tools exist for performing higher-level analysis and visualization of simulated DFN data. The prototype system we present addresses this need. We demonstrate its effectiveness for increasingly complex examples of DFNs, covering two distinct use cases - hydrocarbon extraction from unconventional resources and transport of dissolved contaminant from a spent nuclear fuel repository.

3.
Ground Water ; 51(4): 525-38, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23745958

RESUMO

A series of Mb 3.8-5.5 induced seismic events in the midcontinent region, United States, resulted from injection of fluid either into a basal sedimentary reservoir with no underlying confining unit or directly into the underlying crystalline basement complex. The earthquakes probably occurred along faults that were likely critically stressed within the crystalline basement. These faults were located at a considerable distance (up to 10 km) from the injection wells and head increases at the hypocenters were likely relatively small (∼70-150 m). We present a suite of simulations that use a simple hydrogeologic-geomechanical model to assess what hydrogeologic conditions promote or deter induced seismic events within the crystalline basement across the midcontinent. The presence of a confining unit beneath the injection reservoir horizon had the single largest effect in preventing induced seismicity within the underlying crystalline basement. For a crystalline basement having a permeability of 2 × 10(-17) m(2) and specific storage coefficient of 10(-7) /m, injection at a rate of 5455 m(3) /d into the basal aquifer with no underlying basal seal over 10 years resulted in probable brittle failure to depths of about 0.6 km below the injection reservoir. Including a permeable (kz = 10(-13) m(2) ) Precambrian normal fault, located 20 m from the injection well, increased the depth of the failure region below the reservoir to 3 km. For a large permeability contrast between a Precambrian thrust fault (10(-12) m(2) ) and the surrounding crystalline basement (10(-18) m(2) ), the failure region can extend laterally 10 km away from the injection well.


Assuntos
Terremotos , Indústrias Extrativas e de Processamento , Sedimentos Geológicos , Geologia/métodos , Terremotos/classificação , Água Subterrânea , Modelos Teóricos , Gás Natural , Campos de Petróleo e Gás , Estados Unidos
4.
Ground Water ; 48(1): 143-58, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19754848

RESUMO

While the existence of relatively fresh groundwater sequestered within permeable, porous sediments beneath the Atlantic continental shelf of North and South America has been known for some time, these waters have never been assessed as a potential resource. This fresh water was likely emplaced during Pleistocene sea-level low stands when the shelf was exposed to meteoric recharge and by elevated recharge in areas overrun by the Laurentide ice sheet at high latitudes. To test this hypothesis, we present results from a high-resolution paleohydrologic model of groundwater flow, heat and solute transport, ice sheet loading, and sea level fluctuations for the continental shelf from New Jersey to Maine over the last 2 million years. Our analysis suggests that the presence of fresh to brackish water within shallow Miocene sands more than 100 km offshore of New Jersey was facilitated by discharge of submarine springs along Baltimore and Hudson Canyons where these shallow aquifers crop out. Recharge rates four times modern levels were computed for portions of New England's continental shelf that were overrun by the Laurentide ice sheet during the last glacial maximum. We estimate the volume of emplaced Pleistocene continental shelf fresh water (less than 1 ppt) to be 1300 km(3) in New England. We also present estimates of continental shelf fresh water resources for the U.S. Atlantic eastern seaboard (10(4) km(3)) and passive margins globally (3 x 10(5) km(3)). The simulation results support the hypothesis that offshore fresh water is a potentially valuable, albeit nonrenewable resource for coastal megacities faced with growing water shortages.


Assuntos
Monitoramento Ambiental/métodos , Água Doce , Modelos Teóricos , Movimentos da Água , Oceanos e Mares , Estados Unidos
5.
Ground Water ; 43(1): 122-32, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15726930

RESUMO

Three-dimensional grids representing a heterogeneous, ground water system are generated at 10 different resolutions in support of a site-scale flow and transport modeling effort. These grids represent hydrostratigraphy near Yucca Mountain, Nevada, consisting of 18 stratigraphic units with contrasting fluid flow and transport properties. The grid generation method allows the stratigraphy to be modeled by numerical grids of different resolution so that comparison studies can be performed to test for grid quality and determine the resolution required to resolve geologic structure and physical processes such as fluid flow and solute transport. The process of generating numerical grids with appropriate property distributions from geologic conceptual models is automated, thus making the entire process easy to implement with fewer user-induced errors. The series of grids of various resolutions are used to assess the level at which increasing resolution no longer influences the flow and solute transport results. Grid resolution is found to be a critical issue for ground water flow and solute transport. The resolution required in a particular instance is a function of the feature size of the model, the intrinsic properties of materials, the specific physics of the problem, and boundary conditions. The asymptotic nature of results related to flow and transport indicate that for a hydrologic model of the heterogeneous hydrostratigraphy under Yucca Mountain, a horizontal grid spacing of 600 m and vertical grid spacing of 40 m resolve the hydrostratigraphic model with sufficient precision to accurately model the hypothetical flow and solute transport to within 5% of the value that would be obtained with much higher resolution.


Assuntos
Água Doce , Sedimentos Geológicos , Modelos Teóricos , Movimentos da Água , Análise de Elementos Finitos , Nevada , Resíduos Radioativos , Poluentes Radioativos da Água
6.
J Contam Hydrol ; 62-63: 319-36, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12714298

RESUMO

Retardation of certain radionuclides due to sorption to zeolitic minerals is considered one of the major barriers to contaminant transport in the unsaturated zone of Yucca Mountain. However, zeolitically altered areas are lower in permeability than unaltered regions, which raises the possibility that contaminants might bypass the sorptive zeolites. The relationship between hydrologic and chemical properties must be understood to predict the transport of radionuclides through zeolitically altered areas. In this study, we incorporate mineralogical information into an unsaturated zone transport model using geostatistical techniques to correlate zeolitic abundance to hydrologic and chemical properties. Geostatistical methods are used to develop variograms, kriging maps, and conditional simulations of zeolitic abundance. We then investigate, using flow and transport modeling on a heterogeneous field, the relationship between percent zeolitic alteration, permeability changes due to alteration, sorption due to alteration, and their overall effect on radionuclide transport. We compare these geostatistical simulations to a simplified threshold method in which each spatial location in the model is assigned either zeolitic or vitric properties based on the zeolitic abundance at that location. A key conclusion is that retardation due to sorption predicted by using the continuous distribution is larger than the retardation predicted by the threshold method. The reason for larger retardation when using the continuous distribution is a small but significant sorption at locations with low zeolitic abundance. If, for practical reasons, models with homogeneous properties within each layer are used, we recommend setting nonzero K(d)s in the vitric tuffs to mimic the more rigorous continuous distribution simulations. Regions with high zeolitic abundance may not be as effective in retarding radionuclides such as Neptunium since these rocks are lower in permeability and contaminants can only enter these regions through molecular diffusion.


Assuntos
Geologia , Modelos Estatísticos , Movimentos da Água , Zeolitas/química , Adsorção , Previsões , Fenômenos Geológicos , Nevada , Permeabilidade , Resíduos Radioativos , Eliminação de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA