Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(3): e202302354, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37768608

RESUMO

In recent years, metal complexes of pyridyl-mesoionic carbene (MIC) ligands have been reported as excellent homogeneous and molecular electrocatalysts. In combination with group 9 metals, such ligands form highly active catalysts for hydrogenation/transfer hydrogenation/hydrosilylation catalysis and electrocatalysts for dihydrogen production. Despite such progress, very little is known about the structural/electrochemical/spectroscopic properties of crucial intermediates for such catalytic reactions with these ligands: solvato complexes, reduced complexes and hydridic species. We present here a comprehensive study involving the isolation, crystallographic characterization, electrochemical/spectroelectrochemical/theoretical investigations, and in-situ reactivity studies of all the aforementioned crucial intermediates involving Cp*Rh and pyridyl-MIC ligands. A detailed mechanistic study of the precatalytic activation of [RhCp*] complexes with pyridyl-MIC ligands is presented. Intriguingly, amphiphilicity of the [RhCp*]-hydride complexes was observed, displaying the substrate dependent transfer of H+ , H or H- . To the best of our knowledge, this study is the first of its kind targeting intermediates and reactive species involving metal complexes of pyridyl-MIC ligands and investigating the interconversion amongst them.

2.
Angew Chem Int Ed Engl ; 62(36): e202307317, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37358186

RESUMO

Pyrazolones represent an important structural motif in active pharmaceutical ingredients. Their asymmetric synthesis is thus widely studied. Still, a generally highly enantio- and diastereoselective 1,4-addition to nitroolefins providing products with adjacent stereocenters is elusive. In this article, a new polyfunctional CuII -1,2,3-triazolium-aryloxide catalyst is presented which enables this reaction type with high stereocontrol. DFT studies revealed that the triazolium stabilizes the transition state by hydrogen bonding between C(5)-H and the nitroolefin and verify a cooperative mode of activation. Moreover, they show that the catalyst adopts a rigid chiral cage/pore structure by intramolecular hydrogen bonding, by which stereocontrol is achieved. Control catalyst systems confirm the crucial role of the triazolium, aryloxide and CuII , requiring a sophisticated structural orchestration for high efficiency. The addition products were used to form pyrazolidinones by chemoselective C=N reduction. These heterocycles are shown to be valuable precursors toward ß,γ'-diaminoamides by chemoselective nitro and N-N bond reductions. Morphological profiling using the Cell painting assay identified biological activities for the pyrazolidinones and suggest modulation of DNA synthesis as a potential mode of action. One product showed biological similarity to Camptothecin, a lead structure for cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...