Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 278(10): 7981-7, 2003 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-12496253

RESUMO

During hemostasis, factor IX is activated to factor IXabeta by factor VIIa and factor XIa. The glutamic acid-rich gamma-carboxyglutamic acid (Gla) domain of factor IX is involved in phospholipid binding and is required for activation by factor VIIa. In contrast, activation by factor XIa is not phospholipid-dependent, raising questions about the importance of the Gla for this reaction. We examined binding of factors IX and IXabeta to factor XIa by surface plasmon resonance. Plasma factors IX and IXabeta bind to factor XIa with K(d) values of 120 +/- 11 nm and 110 +/- 8 nm, respectively. Recombinant factor IX bound to factor XIa with a K(d) of 107 nm, whereas factor IX with a factor VII Gla domain (rFIX/VII-Gla) and factor IX expressed in the presence of warfarin (rFIX-desgamma) did not bind. An anti-factor IX Gla monoclonal antibody was a potent inhibitor of factor IX binding to factor XIa (K(i) 34 nm) and activation by factor XIa (K(i) 33 nm). In activated partial thromboplastin time clotting assays, the specific activities of plasma and recombinant factor IX were comparable (200 and 150 units/mg), whereas rFIX/VII-Gla activity was low (<2 units/mg). In contrast, recombinant factor IXabeta and activated rFIX/VIIa-Gla had similar activities (80 and 60% of plasma factor IXabeta), indicating that both proteases activate factor X and that the poor activity of zymogen rFIX/VII-Gla was caused by a specific defect in activation by factor XIa. The data demonstrate that factor XIa binds with comparable affinity to factors IX and IXabeta and that the interactions are dependent on the factor IX Gla domain.


Assuntos
Fator IX/metabolismo , Fator XIa/metabolismo , Fragmentos de Peptídeos/metabolismo , Fator IX/química , Humanos , Fragmentos de Peptídeos/química , Ligação Proteica , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície
2.
Stroke ; 33(2): 578-85, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11823673

RESUMO

BACKGROUND AND PURPOSE: Although used clinically to prevent stroke, there are few examples of anticoagulant investigations in the treatment of acute thromboembolic stroke in animal models. The treatment of thromboembolic stroke in experimental models has been investigated almost exclusively around the use of tissue plasminogen activator (tPA). In this study, using a rat thromboembolic stroke model, we investigated the use of an inhibitory anti-factor IX(a) monoclonal antibody (SB 249417) for the treatment of thromboembolic stroke and compared its efficacy to that of tPA. METHODS: Stroke was initiated by delivering 6 clots into the internal carotid artery. After 2, 4, or 6 hours, rats received either intravenous vehicle, 10.0 mg/kg tPA, or 1.0, 2.0, or 3.0 mg/kg SB 249417. At 24 hours after stroke, infarct volumes and neurological deficits were assessed. RESULTS: Treatment with tPA 2, 4, or 6 hours after stroke reduced infarct volumes by 35% (P=NS), 45%, and 39%, respectively. tPA treatment did not improve neurological deficits at any time point. Treatment with SB 249417 (3.0 mg/kg) 2, 4, or 6 hours after stroke reduced infarct volumes by 44%, 50%, and 13% (P=NS), respectively. Neurological deficits were reduced by 49%, 42%, and 13% (P=NS), respectively. Neither mortality nor hemorrhage was affected by either treatment. CONCLUSIONS: The data indicate that the inhibition of factor IX(a) within 4 hours of thromboembolic stroke produced a more favorable outcome than tPA. When treatment was initiated 6 hours after stroke, the benefits of factor IX(a) inhibition were lost, whereas tPA continued to suppress lesion development, albeit without a corresponding improvement in functional deficits. This study suggests that cerebral ischemia and the resultant perfusion deficit are exacerbated by the activation of blood coagulation and that anticoagulants like SB 249417 may find utility in the treatment of ischemic stroke.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Fator IXa/antagonistas & inibidores , Fibrinolíticos/uso terapêutico , Acidente Vascular Cerebral/terapia , Tromboembolia/terapia , Doença Aguda , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Exame Neurológico , Ativadores de Plasminogênio/uso terapêutico , Prosencéfalo/irrigação sanguínea , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/patologia , Ratos , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/fisiopatologia , Taxa de Sobrevida , Tromboembolia/complicações , Tromboembolia/patologia , Fatores de Tempo , Ativador de Plasminogênio Tecidual/uso terapêutico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...