Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22275514

RESUMO

BackgroundCandida parapsilosis is a frequent cause of candidemia worldwide. Its incidence is associated with the use of medical implants, such as central venous catheters or parenteral nutrition. This species has reduced susceptibility to echinocandins and is susceptible to polyenes and azoles. Multiple outbreaks caused by fluconazole non-susceptible strains have been reported recently. A similar trend has been observed among the C. parapsilosis isolates received in the last two years at the Spanish Mycology Reference Laboratory. MethodsYeast were identified by molecular biology and antifungal susceptibility testing was performed using EUCAST protocol. ERG11 gene was sequenced to identify resistance mechanisms, and typification was carried out by microsatellite analysis. ResultsWe examined the susceptibility profile of the C. parapsilosis isolates available at our Reference Laboratory since 2000 (around 1,300 strains). During the last two years, the number of isolates with acquired resistance to fluconazole and voriconazole has increased in at least eight different Spanish hospitals. Typification of the isolates revealed that some prevalent clones had spread through several hospitals of the same geographical region. One of these clones was found in hospitals from the region of Catalonia, another in hospitals from Madrid and Burgos, and two other different genotypes from Santander. ConclusionsOur data suggests that the epidemiological situation caused by the COVID-19 pandemic might have induced a selection of fluconazole-resistant C. parapsilosis isolates that were already present at the hospitals. Further measures must be taken to avoid the establishment of clinical outbreaks that could threaten the life of infected patients.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22269752

RESUMO

Initial symptoms of COVID-19 infection depend on viral replication, while hyperinflammation is a hallmark of critical illness and may drive severe pneumonia and death. Among the mechanisms potentially involved in the hyperinflammatory state, we focused on the unfolded protein response, because the IRE1-XBP1 branch can be activated as result of the endoplasmic reticulum stress produced by the overwhelming synthesis of viral components and synergizes with Toll-like receptor signaling to induce cytokine expression. Viral RNA may trigger the IRE1-XBP1 branch via TLR7/8 activation and like TLR2 and TLR4 may underpin cytokine expression trough XBP1 splicing (sXBP1). The expression of IL1B, IL6, and TNF mRNA in bronchoalveolar aspirates (BAAs) were higher in COVID-19 patients under mechanical ventilation and intubation who showed sXBP1. The scrutiny of monocytic/macrophagic markers during active infection showed a reduction of those involved in antigen presentation and survival, as well as the IFN stimulated gene MX1. These changes reverted after infection tests turned negative. In contrast, the expression of the mRNA of the serine protease TMPRSS2 involved in S protein priming showed a high expression during active infection. TLR8 mRNA showed an overwhelming expression as compared to TLR7 mRNA, which suggests the presence of monocyte-derived dendritic cells (MDDCs). In vitro experiments in MDDCs activated with ssRNA40, a positive-sense, single-stranded RNA (+ssRNA) like SARS-CoV-2 RNA, induced sXBP1 and the expression of IL-1{beta}, IL-6, and TNF at mRNA and protein levels. These responses were blunted by the IRE1 ribonuclease inhibitor MKC8866. Given the analogies between the results observed in BAAs and the effects induced by +ssRNA in MDDCs, IRE1 ribonuclease inhibition might be a druggable target in severe COVID-19 disease. O_FIG O_LINKSMALLFIG WIDTH=180 HEIGHT=200 SRC="FIGDIR/small/22269752v1_ufig1.gif" ALT="Figure 1"> View larger version (53K): org.highwire.dtl.DTLVardef@13b04b3org.highwire.dtl.DTLVardef@1b1af7corg.highwire.dtl.DTLVardef@780104org.highwire.dtl.DTLVardef@8ad0ba_HPS_FORMAT_FIGEXP M_FIG C_FIG Author summaryCOVID-19 pandemics put an unprecedented pressure on health systems. The need of new therapies urged research on the mechanisms triggered by the interaction of SARS-CoV-2 virus with host cells and the ensuing pathophysiology driving pneumonia and multiorgan failure. Hyperinflammation soon appeared as a mechanism involved in mortality that could even proceed after viral infection comes to an end. Hyperinflammation is supported by an inappropriate production of cytokines, and this explains the use of the term cytokine storm to refer to this phase of the disease. Given that insight into the molecular mechanisms driving cytokine storm should focus on the interaction of viral components with immune cells, experiments addressing the effect of viral components on its cognate receptors were carried out. It was observed that viral RNA induces a cytokine pattern like the one observed in bronchoalveolar aspirates of COVID-19 patients with critical disease. Overall, the study revealed that both cell organelle overload and receptors involved in the recognition of viral RNA may team up to induce proinflammatory cytokines. This mechanism can be exploited to develop new treatments for COVID-19 disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...