Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Phys Imaging Radiat Oncol ; 30: 100585, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38799810

RESUMO

Background and purpose: Magnetic resonance imaging (MRI) scans are highly sensitive to acquisition and reconstruction parameters which affect feature stability and model generalizability in radiomic research. This work aims to investigate the effect of image pre-processing and harmonization methods on the stability of brain MRI radiomic features and the prediction performance of radiomic models in patients with brain metastases (BMs). Materials and methods: Two T1 contrast enhanced brain MRI data-sets were used in this study. The first contained 25 BMs patients with scans at two different time points and was used for features stability analysis. The effect of gray level discretization (GLD), intensity normalization (Z-score, Nyul, WhiteStripe, and in house-developed method named N-Peaks), and ComBat harmonization on features stability was investigated and features with intraclass correlation coefficient >0.8 were considered as stable. The second data-set containing 64 BMs patients was used for a classification task to investigate the informativeness of stable features and the effects of harmonization methods on radiomic model performance. Results: Applying fixed bin number (FBN) GLD, resulted in higher number of stable features compare to fixed bin size (FBS) discretization (10 ± 5.5 % higher). `Harmonization in feature domain improved the stability for non-normalized and normalized images with Z-score and WhiteStripe methods. For the classification task, keeping the stable features resulted in good performance only for normalized images with N-Peaks along with FBS discretization. Conclusions: To develop a robust MRI based radiomic model we recommend using an intensity normalization method based on a reference tissue (e.g N-Peaks) and then using FBS discretization.

2.
Radiology ; 310(2): e231319, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38319168

RESUMO

Filters are commonly used to enhance specific structures and patterns in images, such as vessels or peritumoral regions, to enable clinical insights beyond the visible image using radiomics. However, their lack of standardization restricts reproducibility and clinical translation of radiomics decision support tools. In this special report, teams of researchers who developed radiomics software participated in a three-phase study (September 2020 to December 2022) to establish a standardized set of filters. The first two phases focused on finding reference filtered images and reference feature values for commonly used convolutional filters: mean, Laplacian of Gaussian, Laws and Gabor kernels, separable and nonseparable wavelets (including decomposed forms), and Riesz transformations. In the first phase, 15 teams used digital phantoms to establish 33 reference filtered images of 36 filter configurations. In phase 2, 11 teams used a chest CT image to derive reference values for 323 of 396 features computed from filtered images using 22 filter and image processing configurations. Reference filtered images and feature values for Riesz transformations were not established. Reproducibility of standardized convolutional filters was validated on a public data set of multimodal imaging (CT, fluorodeoxyglucose PET, and T1-weighted MRI) in 51 patients with soft-tissue sarcoma. At validation, reproducibility of 486 features computed from filtered images using nine configurations × three imaging modalities was assessed using the lower bounds of 95% CIs of intraclass correlation coefficients. Out of 486 features, 458 were found to be reproducible across nine teams with lower bounds of 95% CIs of intraclass correlation coefficients greater than 0.75. In conclusion, eight filter types were standardized with reference filtered images and reference feature values for verifying and calibrating radiomics software packages. A web-based tool is available for compliance checking.


Assuntos
Processamento de Imagem Assistida por Computador , Radiômica , Humanos , Reprodutibilidade dos Testes , Biomarcadores , Imagem Multimodal
3.
Front Med (Lausanne) ; 9: 988927, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465941

RESUMO

Background: Interstitial lung disease (ILD) defines a group of parenchymal lung disorders, characterized by fibrosis as their common final pathophysiological stage. To improve diagnosis and treatment of ILD, there is a need for repetitive non-invasive characterization of lung tissue by quantitative parameters. In this study, we investigated whether CT image patterns found in mice with bleomycin induced lung fibrosis can be translated as prognostic factors to human patients diagnosed with ILD. Methods: Bleomycin was used to induce lung fibrosis in mice (n_control = 36, n_experimental = 55). The patient cohort consisted of 98 systemic sclerosis (SSc) patients (n_ILD = 65). Radiomic features (n_histogram = 17, n_texture = 137) were extracted from microCT (mice) and HRCT (patients) images. Predictive performance of the models was evaluated with the area under the receiver-operating characteristic curve (AUC). First, predictive performance of individual features was examined and compared between murine and patient data sets. Second, multivariate models predicting ILD were trained on murine data and tested on patient data. Additionally, the models were reoptimized on patient data to reduce the influence of the domain shift on the performance scores. Results: Predictive power of individual features in terms of AUC was highly correlated between mice and patients (r = 0.86). A model based only on mean image intensity in the lung scored AUC = 0.921 ± 0.048 in mice and AUC = 0.774 (CI95% 0.677-0.859) in patients. The best radiomic model based on three radiomic features scored AUC = 0.994 ± 0.013 in mice and validated with AUC = 0.832 (CI95% 0.745-0.907) in patients. However, reoptimization of the model weights in the patient cohort allowed to increase the model's performance to AUC = 0.912 ± 0.058. Conclusion: Radiomic signatures of experimental ILD derived from microCT scans translated to HRCT of humans with SSc-ILD. We showed that the experimental model of BLM-induced ILD is a promising system to test radiomic models for later application and validation in human cohorts.

4.
Front Oncol ; 12: 830627, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494048

RESUMO

Purpose: We explored imaging and blood bio-markers for survival prediction in a cohort of patients with metastatic melanoma treated with immune checkpoint inhibition. Materials and Methods: 94 consecutive metastatic melanoma patients treated with immune checkpoint inhibition were included into this study. PET/CT imaging was available at baseline (Tp0), 3 months (Tp1) and 6 months (Tp2) after start of immunotherapy. Radiological response at Tp2 was evaluated using iRECIST. Total tumor burden (TB) at each time-point was measured and relative change of TB compared to baseline was calculated. LDH, CRP and S-100B were also analyzed. Cox proportional hazards model and logistic regression were used for survival analysis. Results: iRECIST at Tp2 was significantly associated with overall survival (OS) with C-index=0.68. TB at baseline was not associated with OS, whereas TB at Tp1 and Tp2 provided similar predictive power with C-index of 0.67 and 0.71, respectively. Appearance of new metastatic lesions during follow-up was an independent prognostic factor (C-index=0.73). Elevated LDH and S-100B ratios at Tp2 were significantly associated with worse OS: C-index=0.73 for LDH and 0.73 for S-100B. Correlation of LDH with TB was weak (r=0.34). A multivariate model including TB change, S-100B, and appearance of new lesions showed the best predictive performance with C-index=0.83. Conclusion: Our analysis shows only a weak correlation between LDH and TB. Additionally, baseline TB was not a prognostic factor in our cohort. A multivariate model combining early blood and imaging biomarkers achieved the best predictive power with regard to survival, outperforming iRECIST.

5.
Radiother Oncol ; 170: 205-212, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35351536

RESUMO

BACKGROUND AND PURPOSE: MR-guided radiotherapy (MRgRT) allows real-time beam-gating to compensate for intra-fractional target position variations. This study investigates the dosimetric impact of beam-gating and the impact of PTV margin on prostate coverage for prostate cancer patients treated with online-adaptive MRgRT. MATERIALS AND METHODS: 20 consecutive prostate cancer patients were treated with online-adaptive MRgRT SBRT with 36.25 Gy in 5 fractions (PTV D95% ≥ 95% (N = 5) and PTV D95% ≥ 100% (N = 15)). Sagittal 2D cine MRIs were used for gating on the prostate with a 3 mm expansion as the gating window. We computed motion-compensated dose distributions for (i) all prostate positions during treatment (simulating non-gated treatments) and (ii) for prostate positions within the gating window (gated treatments). To evaluate the impact of PTV margin on prostate coverage, we simulated coverage with smaller margins than clinically applied both for gated and non-gated treatments. Motion-compensated fraction doses were accumulated and dose metrics were compared. RESULTS: We found a negligible dosimetric impact of beam-gating on prostate coverage (median of 0.00 Gy for both D95% and Dmean). For 18/20 patients, prostate coverage (D95% ≥ 100%) would have been ensured with a prostate-to-PTV margin of 3 mm, even without gating. The same was true for all but one fraction. CONCLUSION: Beam-gating has negligible dosimetric impact in online-adaptive MRgRT of prostate cancer. Accounting for motion, the clinically used prostate-to-PTV margin could potentially be reduced from 5 mm to 3 mm for 18/20 patients.


Assuntos
Neoplasias da Próstata , Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Humanos , Imageamento por Ressonância Magnética , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
6.
Eur Respir J ; 59(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34649979

RESUMO

BACKGROUND: Radiomic features calculated from routine medical images show great potential for personalised medicine in cancer. Patients with systemic sclerosis (SSc), a rare, multiorgan autoimmune disorder, have a similarly poor prognosis due to interstitial lung disease (ILD). Here, our objectives were to explore computed tomography (CT)-based high-dimensional image analysis ("radiomics") for disease characterisation, risk stratification and relaying information on lung pathophysiology in SSc-ILD. METHODS: We investigated two independent, prospectively followed SSc-ILD cohorts (Zurich, derivation cohort, n=90; Oslo, validation cohort, n=66). For every subject, we defined 1355 robust radiomic features from standard-of-care CT images. We performed unsupervised clustering to identify and characterise imaging-based patient clusters. A clinically applicable prognostic quantitative radiomic risk score (qRISSc) for progression-free survival (PFS) was derived from radiomic profiles using supervised analysis. The biological basis of qRISSc was assessed in a cross-species approach by correlation with lung proteomic, histological and gene expression data derived from mice with bleomycin-induced lung fibrosis. RESULTS: Radiomic profiling identified two clinically and prognostically distinct SSc-ILD patient clusters. To evaluate the clinical applicability, we derived and externally validated a binary, quantitative radiomic risk score (qRISSc) composed of 26 features that accurately predicted PFS and significantly improved upon clinical risk stratification parameters in multivariable Cox regression analyses in the pooled cohorts. A high qRISSc score, which identifies patients at risk for progression, was reverse translatable from human to experimental ILD and correlated with fibrotic pathway activation. CONCLUSIONS: Radiomics-based risk stratification using routine CT images provides complementary phenotypic, clinical and prognostic information significantly impacting clinical decision making in SSc-ILD.


Assuntos
Doenças Pulmonares Intersticiais , Escleroderma Sistêmico , Animais , Humanos , Pulmão/patologia , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Doenças Pulmonares Intersticiais/etiologia , Camundongos , Prognóstico , Proteômica , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
7.
Br J Radiol ; 94(1120): 20200947, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33544646

RESUMO

OBJECTIVES: In this study, we aimed to assess the impact of different CT reconstruction kernels on the stability of radiomic features and the transferability between different diseases and tissue types. Three lung diseases were evaluated, i.e. non-small cell lung cancer (NSCLC), malignant pleural mesothelioma (MPM) and interstitial lung disease related to systemic sclerosis (SSc-ILD) as well as four different tissue types, i.e. primary tumor, largest involved lymph node ipsilateral and contralateral lung. METHODS: Pre-treatment non-contrast enhanced CT scans from 23 NSCLC, 10 MPM and 12 SSc-ILD patients were collected retrospectively. For each patient, CT scans were reconstructed using smooth and sharp kernel in filtered back projection. The regions of interest (ROIs) were contoured on the smooth kernel-based CT and transferred to the sharp kernel-based CT. The voxels were resized to the largest voxel dimension of each cohort. In total, 1386 features were analyzed. Feature stability was assessed using the intraclass correlation coefficient. Features above the stability threshold >0.9 were considered stable. RESULTS: We observed a strong impact of the reconstruction method on stability of the features (at maximum 26% of the 1386 features were stable). Intensity features were the most stable followed by texture and wavelet features. The wavelet features showed a positive correlation between percentage of stable features and size of the ROI (R2 = 0.79, p = 0.005). Lymph node radiomics showed poorest stability (<10%) and lung radiomics the largest stability (26%). Robustness analysis done on the contralateral lung could to a large extent be transferred to the ipsilateral lung, and the overlap of stable lung features between different lung diseases was more than 50%. However, results of robustness studies cannot be transferred between tissue types, which was investigated in NSCLC and MPM patients; the overlap of stable features for lymph node and lung, as well as for primary tumor and lymph node was very small in both disease types. CONCLUSION: The robustness of radiomic features is strongly affected by different reconstruction kernels. The effect is largely influenced by the tissue type and less by the disease type. ADVANCES IN KNOWLEDGE: The study presents to our knowledge the most complete analysis on the impact of convolution kernel on the robustness of CT-based radiomics for four relevant tissue types in three different lung diseases. .


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Mesotelioma Maligno/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Estudos de Coortes , Humanos , Pulmão/diagnóstico por imagem , Reprodutibilidade dos Testes , Estudos Retrospectivos
8.
Med Phys ; 47(9): 4045-4053, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32395833

RESUMO

BACKGROUND: Radiomics is a promising tool for the identification of new prognostic biomarkers. Radiomic features can be affected by different scanning protocols, often present in retrospective and prospective clinical data. We compared a computed tomography (CT) radiomics model based on a large but highly heterogeneous multicentric image dataset with robust feature pre-selection to a model based on a smaller but standardized image dataset without pre-selection. MATERIALS AND METHODS: Primary tumor radiomics was extracted from pre-treatment CTs of IIIA/N2/IIIB NSCLC patients from a prospective Swiss multicentric randomized trial (npatient  = 124, ninstitution  = 14, SAKK 16/00) and a validation dataset (npatient  = 31, ninstitution  = 1). Four robustness studies investigating inter-observer delineation variation, motion, convolution kernel, and contrast were conducted to identify robust features using an intraclass correlation coefficient threshold >0.9. Two 12-months overall survival (OS) logistic regression models were trained: (a) on the entire multicentric heterogeneous dataset but with robust feature pre-selection (MCR) and (b) on a smaller standardized subset using all features (STD). Both models were validated on the validation dataset acquired with similar reconstruction parameters as the STD dataset. The model performances were compared using the DeLong test. RESULTS: In total, 113 stable features were identified (nshape  = 8, nintensity  = 0, ntexture  = 7, nwavelet  = 98). The convolution kernel had the strongest influence on the feature robustness (<20% stable features). The final models of MCR and STD consisted of one and two features respectively. Both features of the STD model were identified as non-robust. MCR did not show performance significantly different from STD on the validation cohort (AUC [95%CI] = 0.72 [0.48-0.95] and 0.79 [0.63-0.95], p = 0.59). CONCLUSION: Prognostic OS CT radiomics model for NSCLC based on a heterogeneous multicentric imaging dataset with robust feature pre-selection performed equally well as a model on a standardized dataset.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Estudos Prospectivos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
9.
Clin Cancer Res ; 26(16): 4414-4425, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32253232

RESUMO

PURPOSE: We assessed the predictive potential of positron emission tomography (PET)/CT-based radiomics, lesion volume, and routine blood markers for early differentiation of pseudoprogression from true progression at 3 months. EXPERIMENTAL DESIGN: 112 patients with metastatic melanoma treated with immune checkpoint inhibition were included in our study. Median follow-up duration was 22 months. 716 metastases were segmented individually on CT and 2[18F]fluoro-2-deoxy-D-glucose (FDG)-PET imaging at three timepoints: baseline (TP0), 3 months (TP1), and 6 months (TP2). Response was defined on a lesion-individual level (RECIST 1.1) and retrospectively correlated with FDG-PET/CT radiomic features and the blood markers LDH/S100. Seven multivariate prediction model classes were generated. RESULTS: Two-year (median) overall survival, progression-free survival, and immune progression-free survival were 69% (not reached), 24% (6 months), and 42% (16 months), respectively. At 3 months, 106 (16%) lesions had progressed, of which 30 (5%) were identified as pseudoprogression at 6 months. Patients with pseudoprogressive lesions and without true progressive lesions had a similar outcome to responding patients and a significantly better 2-year overall survival of 100% (30 months), compared with 15% (10 months) in patients with true progressions/without pseudoprogression (P = 0.002). Patients with mixed progressive/pseudoprogressive lesions were in between at 53% (25 months). The blood prediction model (LDH+S100) achieved an AUC = 0.71. Higher LDH/S100 values indicated a low chance of pseudoprogression. Volume-based models: AUC = 0.72 (TP1) and AUC = 0.80 (delta-volume between TP0/TP1). Radiomics models (including/excluding volume-related features): AUC = 0.79/0.78. Combined blood/volume model: AUC = 0.79. Combined blood/radiomics model (including volume-related features): AUC = 0.78. The combined blood/radiomics model (excluding volume-related features) performed best: AUC = 0.82. CONCLUSIONS: Noninvasive PET/CT-based radiomics, especially in combination with blood parameters, are promising biomarkers for early differentiation of pseudoprogression, potentially avoiding added toxicity or delayed treatment switch.


Assuntos
Inibidores de Checkpoint Imunológico/farmacologia , Melanoma/tratamento farmacológico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Adulto , Progressão da Doença , Feminino , Fluordesoxiglucose F18/administração & dosagem , Humanos , Masculino , Melanoma/sangue , Melanoma/diagnóstico por imagem , Pessoa de Meia-Idade , Segunda Neoplasia Primária , Intervalo Livre de Progressão , Compostos Radiofarmacêuticos/administração & dosagem , Carga Tumoral/genética , Adulto Jovem
10.
Q J Nucl Med Mol Imaging ; 63(4): 355-370, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31527578

RESUMO

INTRODUCTION: Today, rapid technical and clinical developments result in an increasing number of treatment options for oncological diseases. Thus, decision support systems are needed to offer the right treatment to the right patient. Imaging biomarkers hold great promise in patient-individual treatment guidance. Routinely performed for diagnosis and staging, imaging datasets are expected to hold more information than used in the clinical practice. Radiomics describes the extraction of a large number of meaningful quantitative features from medical images, such as computed tomography (CT) and positron emission tomography (PET). Due to the non-invasive nature and ability to capture 3D image-based heterogeneity, radiomic features are potential surrogate markers of the cancer phenotype. Several radiomic studies are published per day, owing to encouraging results of many radiomics-based patient outcome models. Despite this comparably large number of studies, radiomics is mainly studied in proof of principle concept. Hence, a translation of radiomics from a hot topic research field into an essential clinical decision-making tool is lacking, but of high clinical interest. EVIDENCE ACQUISITION: Herein, we present a literature review addressing the clinical evidence of CT and PET radiomics. An extensive literature review was conducted in PubMed, including papers on robustness and clinical applications. EVIDENCE SYNTHESIS: We summarize image-modality related influences on the robustness of radiomic features and provide an overview of clinical evidence reported in the literature. Today, more evidence has been provided for CT imaging, however, PET imaging offers the promise of direct imaging of biological processes and functions. We provide a summary of future research directions, which needs to be addressed in order to successfully introduce radiomics into clinical medicine. In comparison to CT, more focus should be directed towards harmonization of PET acquisition and reconstruction protocols, which is important for transferable modelling. CONCLUSIONS: Both CT and PET radiomics are promising pre-treatment and intra-treatment biomarkers for outcome prediction. Most studies are performed in retrospective setting, however their validation in prospective data collections is ongoing.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Humanos , Imagem Multimodal
11.
Front Oncol ; 9: 697, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417872

RESUMO

Purpose: Due to the sharp gradients of intensity-modulated radiotherapy (IMRT) dose distributions, treatment uncertainties may induce substantial deviations from the planned dose during irradiation. Here, we investigate if the planned mean dose to parotid glands in combination with the dose gradient and information about anatomical changes during the treatment improves xerostomia prediction in head and neck cancer patients. Materials and methods: Eighty eight patients were retrospectively analyzed. Three features of the contralateral parotid gland were studied in terms of their association with the outcome, i.e., grade ≥ 2 (G2) xerostomia between 6 months and 2 years after radiotherapy (RT): planned mean dose (MD), average lateral dose gradient (GRADX), and parotid gland migration toward medial (PGM). PGM was estimated using daily megavoltage computed tomography (MVCT) images. Three logistic regression models where analyzed: based on (1) MD only, (2) MD and GRADX, and (3) MD, GRADX, and PGM. Additionally, the cohort was stratified based on the median value of GRADX, and a univariate analysis was performed to study the association of the MD with the outcome for patients in low- and high-GRADX domains. Results: The planned MD failed to recognize G2 xerostomia patients (AUC = 0.57). By adding the information of GRADX (second model), the model performance increased to AUC = 0.72. The addition of PGM (third model) led to further improvement in the recognition of the outcome (AUC = 0.79). Remarkably, xerostomia patients in the low-GRADX domain were successfully identified (AUC = 0.88) by the MD alone. Conclusions: Our results indicate that GRADX and PGM, which together serve as a proxy of dosimetric changes, provide valuable information for xerostomia prediction.

12.
Front Oncol ; 8: 35, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29556480

RESUMO

PURPOSE: The purpose of this study is to investigate whether machine learning with dosiomic, radiomic, and demographic features allows for xerostomia risk assessment more precise than normal tissue complication probability (NTCP) models based on the mean radiation dose to parotid glands. MATERIAL AND METHODS: A cohort of 153 head-and-neck cancer patients was used to model xerostomia at 0-6 months (early), 6-15 months (late), 15-24 months (long-term), and at any time (a longitudinal model) after radiotherapy. Predictive power of the features was evaluated by the area under the receiver operating characteristic curve (AUC) of univariate logistic regression models. The multivariate NTCP models were tuned and tested with single and nested cross-validation, respectively. We compared predictive performance of seven classification algorithms, six feature selection methods, and ten data cleaning/class balancing techniques using the Friedman test and the Nemenyi post hoc analysis. RESULTS: NTCP models based on the parotid mean dose failed to predict xerostomia (AUCs < 0.60). The most informative predictors were found for late and long-term xerostomia. Late xerostomia correlated with the contralateral dose gradient in the anterior-posterior (AUC = 0.72) and the right-left (AUC = 0.68) direction, whereas long-term xerostomia was associated with parotid volumes (AUCs > 0.85), dose gradients in the right-left (AUCs > 0.78), and the anterior-posterior (AUCs > 0.72) direction. Multivariate models of long-term xerostomia were typically based on the parotid volume, the parotid eccentricity, and the dose-volume histogram (DVH) spread with the generalization AUCs ranging from 0.74 to 0.88. On average, support vector machines and extra-trees were the top performing classifiers, whereas the algorithms based on logistic regression were the best choice for feature selection. We found no advantage in using data cleaning or class balancing methods. CONCLUSION: We demonstrated that incorporation of organ- and dose-shape descriptors is beneficial for xerostomia prediction in highly conformal radiotherapy treatments. Due to strong reliance on patient-specific, dose-independent factors, our results underscore the need for development of personalized data-driven risk profiles for NTCP models of xerostomia. The facilitated machine learning pipeline is described in detail and can serve as a valuable reference for future work in radiomic and dosiomic NTCP modeling.

13.
Acta Oncol ; 56(9): 1197-1203, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28502238

RESUMO

PURPOSE: Xerostomia is a common side effect of radiotherapy resulting from excessive irradiation of salivary glands. Typically, xerostomia is modeled by the mean dose-response characteristic of parotid glands and prevented by mean dose constraints to either contralateral or both parotid glands. The aim of this study was to investigate whether normal tissue complication probability (NTCP) models based on the mean radiation dose to parotid glands are suitable for the prediction of xerostomia in a highly conformal low-dose regime of modern intensity-modulated radiotherapy (IMRT) techniques. MATERIAL AND METHODS: We present a retrospective analysis of 153 head and neck cancer patients treated with radiotherapy. The Lyman Kutcher Burman (LKB) model was used to evaluate predictive power of the parotid gland mean dose with respect to xerostomia at 6 and 12 months after the treatment. The predictive performance of the model was evaluated by receiver operating characteristic (ROC) curves and precision-recall (PR) curves. RESULTS: Average mean doses to ipsilateral and contralateral parotid glands were 25.4 Gy and 18.7 Gy, respectively. QUANTEC constraints were met in 74% of patients. Mild to severe (G1+) xerostomia prevalence at both 6 and 12 months was 67%. Moderate to severe (G2+) xerostomia prevalence at 6 and 12 months was 20% and 15%, respectively. G1 + xerostomia was predicted reasonably well with area under the ROC curve ranging from 0.69 to 0.76. The LKB model failed to provide reliable G2 + xerostomia predictions at both time points. CONCLUSIONS: Reduction of the mean dose to parotid glands below QUANTEC guidelines resulted in low G2 + xerostomia rates. In this dose domain, the mean dose models predicted G1 + xerostomia fairly well, however, failed to recognize patients at risk of G2 + xerostomia. There is a need for the development of more flexible models able to capture complexity of dose response in this dose regime.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Glândula Parótida/patologia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Xerostomia/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Glândula Parótida/efeitos da radiação , Curva ROC , Dosagem Radioterapêutica , Estudos Retrospectivos , Xerostomia/etiologia
14.
Med Phys ; 44(6): 2556-2568, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28370020

RESUMO

PURPOSE: We report on the development of the open-source cross-platform radiation treatment planning toolkit matRad and its comparison against validated treatment planning systems. The toolkit enables three-dimensional intensity-modulated radiation therapy treatment planning for photons, scanned protons and scanned carbon ions. METHODS: matRad is entirely written in Matlab and is freely available online. It re-implements well-established algorithms employing a modular and sequential software design to model the entire treatment planning workflow. It comprises core functionalities to import DICOM data, to calculate and optimize dose as well as a graphical user interface for visualization. matRad dose calculation algorithms (for carbon ions this also includes the computation of the relative biological effect) are compared against dose calculation results originating from clinically approved treatment planning systems. RESULTS: We observe three-dimensional γ-analysis pass rates ≥ 99.67% for all three radiation modalities utilizing a distance to agreement of 2 mm and a dose difference criterion of 2%. The computational efficiency of matRad is evaluated in a treatment planning study considering three different treatment scenarios for every radiation modality. For photons, we measure total run times of 145 s-1260 s for dose calculation and fluence optimization combined considering 4-72 beam orientations and 2608-13597 beamlets. For charged particles, we measure total run times of 63 s-993 s for dose calculation and fluence optimization combined considering 9963-45574 pencil beams. Using a CT and dose grid resolution of 0.3 cm3 requires a memory consumption of 1.59 GB-9.07 GB and 0.29 GB-17.94 GB for photons and charged particles, respectively. CONCLUSION: The dosimetric accuracy, computational performance and open-source character of matRad encourages a future application of matRad for both educational and research purposes.


Assuntos
Algoritmos , Radioterapia de Intensidade Modulada , Humanos , Fótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...