Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci Res ; 102(2): e25312, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38400578

RESUMO

Learning to play the piano is a unique complex task, integrating multiple sensory modalities and higher order cognitive functions. Longitudinal neuroimaging studies on adult novice musicians show training-related functional changes in music perception tasks. The reorganization of brain activity while actually playing an instrument was studied only on a very short time frame of a single fMRI session, and longer interventions have not yet been performed. Thus, our aim was to investigate the dynamic complexity of functional brain reorganization while playing the piano within the first half year of musical training. We scanned 24 novice keyboard learners (female, 18-23 years old) using fMRI while they played increasingly complex musical pieces after 1, 6, 13, and 26 weeks of training. Playing music evoked responses bilaterally in the auditory, inferior frontal, and supplementary motor areas, and the left sensorimotor cortex. The effect of training over time, however, invoked widespread changes encompassing the right sensorimotor cortex, cerebellum, superior parietal cortex, anterior insula and hippocampus, among others. As the training progressed, the activation of these regions decreased while playing music. Post hoc analysis revealed region-specific time-courses for independent auditory and motor regions of interest. These results suggest that while the primary sensory, motor, and frontal regions are associated with playing music, the training decreases the involvement of higher order cognitive control and integrative regions, and basal ganglia. Moreover, training might affect distinct brain regions in different ways, providing evidence in favor of the dynamic nature of brain plasticity.


Assuntos
Encéfalo , Córtex Motor , Adulto , Humanos , Feminino , Adolescente , Adulto Jovem , Encéfalo/fisiologia , Aprendizagem/fisiologia , Mapeamento Encefálico , Imageamento por Ressonância Magnética/métodos , Córtex Motor/fisiologia
2.
Psychophysiology ; 60(12): e14402, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37602704

RESUMO

Musical training has been linked to enhanced interoceptive abilities and increased resting-state (RS) functional connectivity (FC) within the interoceptive brain network. We aimed to replicate and extend these findings with a unique cross-sectional and longitudinal study design. Professional musicians and matched individuals with no prior musical experience (training group) were recruited. Participants underwent RS fMRI scans and completed heartbeat counting and discrimination tasks outside of the scanner (time point 1). The training group additionally had RS scans and interoception tests repeated after a 6-month-long keyboard course training (time point 2). We found no evidence for increased interoceptive abilities in professional musicians relative to non-musicians, nor did we observe any improvements in interoception over the course of musical training. RS FC analysis revealed increased FC within the sensorimotor network in professional musicians compared to the training group at the first time point with no change in FC over time in the Training group. These findings challenge the view that musical training may improve interoceptive abilities. Yet, the results suggest that musical training is related to increased communication within the sensorimotor RS network, which consists of some hubs important for interoceptive processing (namely pre- and postcentral gyri and supplementary motor area).


Assuntos
Interocepção , Música , Humanos , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Estudos Transversais , Estudos Longitudinais , Encéfalo
3.
Heliyon ; 9(7): e17877, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37501960

RESUMO

Music is a universal human phenomenon, and can be studied for itself or as a window into the understanding of the brain. Few neuroimaging studies investigate actual playing in the MRI scanner, likely because of the lack of available experimental hardware and analysis tools. Here, we offer an innovative paradigm that addresses this issue in neuromusicology using naturalistic, polyphonic musical stimuli, presents a commercially available MRI-compatible piano, and a flexible approach to quantify participant's performance. We show how making errors while playing can be investigated using an altered auditory feedback paradigm. In the spirit of open science, we make our experimental paradigms and analysis tools available to other researchers studying pianists in MRI. Altogether, we present a proof-of-concept study which shows the feasibility of playing the novel piano in MRI, and a step towards using more naturalistic stimuli.

4.
Front Hum Neurosci ; 15: 677793, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177497

RESUMO

Background While research has consistently identified an association between long-term cannabis use and memory impairments, few studies have examined this relationship in a polydrug context (i.e., when combining cannabis with other substances). Aims: In this preliminary study, we used event-related potentials to examine the recognition process in a visual episodic memory task in cannabis users (CU) and cannabis polydrug users (PU). We hypothesized that CU and PU will have both-behavioral and psychophysiological-indicators of memory processes affected, compared to matched non-using controls with the PU expressing more severe changes. Methods 29 non-using controls (CG), 24 CU and 27 PU were enrolled into the study. All participants completed a visual learning recognition task while brain electrical activity was recorded. Event-related potentials were calculated for familiar (old) and new images from a signal recorded during a subsequent recognition test. We used receiver operating characteristic curves for behavioral data analysis. Results The groups did not differ in memory performance based on receiver operating characteristic method in accuracy and discriminability indicators nor mean reaction times for old/new images. The frontal old/new effect expected from prior research was observed for all participants, while a parietal old/new effect was not observed. While, the significant differences in the late parietal component (LPC) amplitude was observed between CG and PU but not between CG and CU nor CU and PU. Linear regression analysis was used to examine the mean amplitude of the LPC component as a predictor of memory performance accuracy indicator. LPC amplitude predicts recognition accuracy only in the CG. Conclusion The results showed alterations in recognition memory processing in CU and PU groups compared to CG, which were not manifested on the behavioral level, and were the most prominent in cannabis polydrug users. We interpret it as a manifestation of the cumulative effect of multiple drug usage in the PU group.

5.
Front Neurosci ; 15: 630829, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776638

RESUMO

Learning to play a musical instrument is a complex task that integrates multiple sensory modalities and higher-order cognitive functions. Therefore, musical training is considered a useful framework for the research on training-induced neuroplasticity. However, the classical nature-or-nurture question remains, whether the differences observed between musicians and non-musicians are due to predispositions or result from the training itself. Here we present a review of recent publications with strong focus on experimental designs to better understand both brain reorganization and the neuronal markers of predispositions when learning to play a musical instrument. Cross-sectional studies identified structural and functional differences between the brains of musicians and non-musicians, especially in regions related to motor control and auditory processing. A few longitudinal studies showed functional changes related to training while listening to and producing music, in the motor network and its connectivity with the auditory system, in line with the outcomes of cross-sectional studies. Parallel changes within the motor system and between the motor and auditory systems were revealed for structural connectivity. In addition, potential predictors of musical learning success were found including increased brain activation in the auditory and motor systems during listening, the microstructure of the arcuate fasciculus, and the functional connectivity between the auditory and the motor systems. We show that "the musical brain" is a product of both the natural human neurodiversity and the training practice.

6.
Ann N Y Acad Sci ; 1492(1): 42-57, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33372699

RESUMO

It is unclear why some people learn faster than others. We performed two independent studies in which we investigated the neural basis of real-time strategy (RTS) gaming and neural predictors of RTS game skill acquisition. In the first (cross-sectional) study, we found that experts in the RTS game StarCraft® II (SC2) had a larger lenticular nucleus volume (LNV) than non-RTS players. We followed a cross-validation procedure where we used the volume of regions identified in the first study to predict the quality of learning a new, complex skill (SC2) in a sample of individuals who were naive to RTS games (a second (training) study). Our findings provide new insights into how the LNV, which is associated with motor as well as cognitive functions, can be utilized to predict successful skill learning and be applied to a much broader context than just video games, such as contributing to optimizing cognitive training interventions.


Assuntos
Corpo Estriado/anatomia & histologia , Corpo Estriado/fisiologia , Jogos de Vídeo/psicologia , Adulto , Cognição/fisiologia , Sistemas Computacionais , Corpo Estriado/diagnóstico por imagem , Estudos Transversais , Humanos , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética , Masculino , Destreza Motora/fisiologia , Neuroimagem , Resolução de Problemas/fisiologia , Desempenho Psicomotor/fisiologia , Análise e Desempenho de Tarefas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...