Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(4): e0284277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37043497

RESUMO

BACKGROUND: Kernel row number (KRN) is an important yield component trait with a direct impact on the productivity of maize. The variability in KRN is influenced by the inflorescence meristem size, which is determined by the CLAVATA-WUSCHEL pathway. A CLAVATA receptor-like protein, encoded by the FASCIATED EAR2 (fea2gene), enhances the growth of inflorescence meristem and is thus involved in the determination of KRN. The amplicon sequencing-based method was employed to dissect the allelic variation of the fea2 gene in tropical field corn. METHODOLOGY/PRINCIPAL FINDING: Amplicon-based sequencing of AI 535 (Low KRN) and AI 536 (High KRN) was undertaken for the gene fea 2 gene that codes for KRN in maize. Upon multiple sequence alignment of both sequences, A to T transversion at the 1311 position was noticed between Low KRN and High KRN genotypes resulting in different allelic forms of a fea2 gene in tropical maize. An allele-specific primer 1311 fea2.1 was designed and validated that can differentiate High and Low KRN genotypes. CONCLUSION/SIGNIFICANCE: Maize has high variability for KRN and is exemplified by the wide values ranging from 8-26 KRN in the maize germpalsm. The sequence-based approach of SNP detection through the use of a specific primer facilitated the detection of variation present in the target trait. This makes it possible to capture these variations in the early generation. In the study, the PCR-based differentiation method described for the identification of desirable high KRN genotypes would augment the breeding programs for improving the productivity of field corn.


Assuntos
Melhoramento Vegetal , Zea mays , Zea mays/genética , Alelos , Fenótipo , Meristema
2.
Mol Biol Rep ; 49(6): 4517-4524, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35474052

RESUMO

BACKGROUND: The demand of maize crop is increasing day by day, hence to reduce the production and demand gap, there is a need to extract the high yielding parental lines to improve per se yield of the hybrids, which could help to enhance the productivity in maize crops. METHODS AND RESULTS: The present investigation was carried out to select the best medium maturing inbred lines, among a set of 118 inbred lines. Based on the Duncan multiple range test, out of 118 lines, 16 inbred lines were selected on the basis of its high yield per se and flowering time. The molecular diversity was carried out using SSR markers linked to heterotic QTL and up on diversity analysis it classified selected genotypes in to three distinct groups. Among the selected inbred lines, a wider genetic variability and molecular diversity were observed. A total of 39 test crosses were generated after classifying 16 inbred lines in to three testers and thirteen lines (based on per se grain yield and molecular diversity) and crossing them in line × tester manner. CONCLUSION: Combining ability analysis of these parental lines showed that female parents, PML 109, PML 110, PML 111, PML 114 and PML 116 showed additive effect for KRN and grain yield, whereas male parents, PML 46, and PML 93 showed epistatic effect for KRN and PML 102 showed epistatic effect for grain yield. The generated information in the present investigation may be exploited for heterosis breeding in filed corn. KEY MESSAGES: To tackle the balanced dietary requirement of Indian population; we focused to enhance the productivity of maize hybrids using genetically broad based, elite, diverse inbred lines. Combination of selection criterion, not only augment the productivity but also improves the quality of hybrid/s.


Assuntos
Vigor Híbrido , Zea mays , Grão Comestível/genética , Vigor Híbrido/genética , Hibridização Genética , Melhoramento Vegetal , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...