Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 14(6): 392, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37391438

RESUMO

Overexpression of Bcl-2 proteins such as Bcl2L10, also referred to as Nrh, is associated with resistance to therapy and poor survival in various cancers, including breast cancer, lung cancer, and leukemia. The single nucleotide polymorphism (SNP) of BCL2L10 in its BH4 domain at position 11 (BCL2L10 Leu11Arg, rs2231292), corresponding to position 11 in the Nrh open reading frame, is reported to lower resistance towards chemotherapy, with patients showing better survival in the context of acute leukemia and colorectal cancer. Using cellular models and clinical data, we aimed to extend this knowledge to breast cancer. We report that the homozygous status of the Nrh Leu11Arg isoform (Nrh-R) is found in 9.7-11% percent of the clinical datasets studied. Furthermore, Nrh-R confers higher sensitivity towards Thapsigargin-induced cell death compared to the Nrh-L isoform, due to altered interactions with IP3R1 Ca2+ channels in the former case. Collectively, our data show that cells expressing the Nrh-R isoform are more prone to death triggered by Ca2+ stress inducers, compared to Nrh-L expressing cells. Analysis of breast cancer cohorts revealed that patients genotyped as Nrh-R/Nrh-R may have a better outcome. Overall, this study supports the notion that the rs2231292 Nrh SNP could be used as a predictive tool regarding chemoresistance, improving therapeutic decision-making processes. Moreover, it sheds new light on the contribution of the BH4 domain to the anti-apoptotic function of Nrh and identifies the IP3R1/Nrh complex as a potential therapeutic target in the context of breast cancer.


Assuntos
Neoplasias da Mama , Leucemia , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Terapia Neoadjuvante , Polimorfismo de Nucleotídeo Único/genética , Retículo Endoplasmático , Biomarcadores
2.
iScience ; 26(5): 106674, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37182099

RESUMO

Non-lethal caspase activation (NLCA) has been linked to neurodevelopmental processes. However, how neurons control NLCA remains elusive. Here, we focused on Bcl-xL, a Bcl-2 homolog regulating caspase activation through the mitochondria. We generated a mouse model, referred to as ER-xL, in which Bcl-xL is absent in the mitochondria, yet present in the endoplasmic reticulum. Unlike bclx knockout mice that died at E13.5, ER-xL mice survived embryonic development but died post-partum because of altered feeding behavior. Enhanced caspase-3 activity was observed in the brain and the spinal cord white matter, but not the gray matter. No increase in cell death was observed in ER-xL cortical neurons, suggesting that the observed caspase-3 activation was apoptosis-independent. ER-xL neurons displayed increased caspase-3 activity in the neurites, resulting in impaired axon arborescence and synaptogenesis. Together, our findings suggest that mitochondrial Bcl-xL finely tunes caspase-3 through Drp-1-dependent mitochondrial fission, which is critical to neural network design.

3.
J Exp Clin Cancer Res ; 41(1): 324, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36380366

RESUMO

BACKGROUND: Aerotaxis, the chemotactism to oxygen, is well documented in prokaryotes. We previously reported for the first time that non-tumorigenic breast epithelial cells also display unequivocal directional migration towards oxygen. This process is independent of the hypoxia-inducible factor (HIF)/prolyl hydroxylase domain (PHD) pathway but controlled by the redox regulation of epidermal growth factor receptor (EGFR), with a reactive oxygen species (ROS) gradient overlapping the oxygen gradient at low oxygen concentration. Since hypoxia is an acknowledged hallmark of cancers, we addressed the putative contribution of aerotaxis to cancer metastasis by studying the directed migration of cancer cells from an hypoxic environment towards nearby oxygen sources, modelling the in vivo migration of cancer cells towards blood capillaries. METHODS: We subjected to the aerotactic test described in our previous papers cells isolated from fresh breast tumours analysed by the Pathology Department of the Saint-Etienne University Hospital (France) over a year. The main selection criterion, aside from patient consent, was the size of the tumour, which had to be large enough to perform the aerotactic tests without compromising routine diagnostic tests. Finally, we compared the aerotactic properties of these primary cells with those of commonly available breast cancer cell lines. RESULTS: We show that cells freshly isolated from sixteen human breast tumour biopsies, representative of various histological characteristics and grades, are endowed with strong aerotactic properties similar to normal mammary epithelial cell lines. Strikingly, aerotaxis of these primary cancerous cells is also strongly dependent on both EGFR activation and ROS. In addition, we demonstrate that aerotaxis can trigger directional invasion of tumour cells within the extracellular matrix contrary to normal mammary epithelial cells. This contrasts with results obtained with breast cancer cell lines, in which aerotactic properties were either retained or impaired, and in some cases, even lost during the establishment of these cell lines. CONCLUSIONS: Altogether, our results support that aerotaxis may play an important role in breast tumour metastasis. In view of these findings, we discuss the prospects for combating metastatic spread. TRIAL REGISTRATION: IRBN1462021/CHUSTE.


Assuntos
Neoplasias da Mama , Receptores ErbB , Humanos , Feminino , Espécies Reativas de Oxigênio , Receptores ErbB/metabolismo , Neoplasias da Mama/genética , Oxigênio/metabolismo , Hipóxia
4.
Sci Adv ; 6(40)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32998881

RESUMO

In metazoans, Bcl-2 family proteins are major regulators of mitochondrially mediated apoptosis; however, their evolution remains poorly understood. Here, we describe the molecular characterization of the four members of the Bcl-2 family in the most primitive metazoan, Trichoplax adhaerens All four trBcl-2 homologs are multimotif Bcl-2 group, with trBcl-2L1 and trBcl-2L2 being highly divergent antiapoptotic Bcl-2 members, whereas trBcl-2L3 and trBcl-2L4 are homologs of proapoptotic Bax and Bak, respectively. trBax expression permeabilizes the mitochondrial outer membrane, while trBak operates as a BH3-only sensitizer repressing antiapoptotic activities of trBcl-2L1 and trBcl-2L2. The crystal structure of a trBcl-2L2:trBak BH3 complex reveals that trBcl-2L2 uses the canonical Bcl-2 ligand binding groove to sequester trBak BH3, indicating that the structural basis for apoptosis control is conserved from T. adhaerens to mammals. Finally, we demonstrate that both trBax and trBak BH3 peptides bind selectively to human Bcl-2 homologs to sensitize cancer cells to chemotherapy treatment.


Assuntos
Apoptose , Proteína Killer-Antagonista Homóloga a bcl-2 , Animais , Humanos , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
5.
Oncogene ; 39(15): 3056-3074, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32066881

RESUMO

The Bcl-xL apoptosis inhibitor plays a major role in vertebrate development. In addition to its effect on apoptosis, Bcl-xL is also involved in cell migration and mitochondrial metabolism. These effects may favour the onset and dissemination of metastasis. However, the underlying molecular mechanisms remain to be fully understood. Here we focus on the control of cell migration by Bcl-xL in the context of breast cancer cells. We show that Bcl-xL silencing led to migration defects in Hs578T and MDA-MB231 cells. These defects were rescued by re-expressing mitochondria-addressed, but not endoplasmic reticulum-addressed, Bcl-xL. The use of BH3 mimetics, such as ABT-737 and WEHI-539 confirmed that the effect of Bcl-xL on migration did not depend on interactions with BH3-containing death accelerators such as Bax or BH3-only proteins. In contrast, the use of a BH4 peptide that disrupts the Bcl-xL/VDAC1 complex supports that Bcl-xL by acting on VDAC1 permeability contributes to cell migration through the promotion of reactive oxygen species production by the electron transport chain. Collectively our data highlight the key role of Bcl-xL at the interface between cell metabolism, cell death, and cell migration, thus exposing the VDAC1/Bcl-xL interaction as a promising target for anti-tumour therapy in the context of metastatic breast cancer.


Assuntos
Neoplasias da Mama/patologia , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína bcl-X/metabolismo , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Humanos , Metástase Linfática/patologia , Mitocôndrias/efeitos dos fármacos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Nitrofenóis/farmacologia , Nitrofenóis/uso terapêutico , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Ligação Proteica/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Canal de Ânion 1 Dependente de Voltagem/antagonistas & inibidores , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/genética
6.
Nat Commun ; 9(1): 4545, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382089

RESUMO

Aerotaxis or chemotaxis to oxygen was described in bacteria 130 years ago. In eukaryotes, the main adaptation to hypoxia currently described relies on HIF transcription factors. To investigate whether aerotaxis is conserved in higher eukaryotes, an approach based on the self-generation of hypoxia after cell confinement was developed. We show that epithelial cells from various tissues migrate with an extreme directionality towards oxygen to escape hypoxia, independently of the HIF pathway. We provide evidence that, concomitant to the oxygen gradient, a gradient of reactive oxygen species (ROS) develops under confinement and that antioxidants dampen aerotaxis. Finally, we establish that in mammary cells, EGF receptor, the activity of which is potentiated by ROS and inhibited by hypoxia, represents the molecular target that guides hypoxic cells to oxygen. Our results reveals that aerotaxis is a property of higher eukaryotic cells and proceeds from the conversion of oxygen into ROS.


Assuntos
Movimento Celular , Receptores ErbB/metabolismo , Glândulas Mamárias Humanas/citologia , Oxigênio/farmacologia , Hipóxia Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Oxirredução , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Cancer Res ; 78(6): 1404-1417, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29330143

RESUMO

Drug resistance and metastatic relapse remain a top challenge in breast cancer treatment. In this study, we present preclinical evidence for a strategy to eradicate advanced breast cancers by targeting the BCL-2 homolog Nrh/BCL2L10, which we discovered to be overexpressed in >45% of a large cohort of breast invasive carcinomas. Nrh expression in these tumors correlated with reduced metastasis-free survival, and we determined it to be an independent marker of poor prognosis. Nrh protein localized to the endoplasmic reticulum. Mechanistic investigations showed that Nrh made BH4 domain-dependent interactions with the ligand-binding domain of the inositol-1,4,5-triphosphate receptor (IP3R), a type 1/3 Ca2+ channel, allowing Nrh to negatively regulate ER-Ca2+ release and to mediate antiapoptosis. Notably, disrupting Nrh/IP3R complexes by BH4 mimetic peptides was sufficient to inhibit the growth of breast cancer cells in vitro and in vivo Taken together, our results highlighted Nrh as a novel prognostic marker and a candidate therapeutic target for late stage breast cancers that may be addicted to Nrh.Significance: These findings offer a comprehensive molecular model for the activity of Nrh/BCL2L10, a little studied antiapoptotic molecule, prognostic marker, and candidate drug target in breast cancer. Cancer Res; 78(6); 1404-17. ©2018 AACR.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Retículo Endoplasmático/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Apoptose/fisiologia , Sítios de Ligação , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos SCID , Terapia de Alvo Molecular/métodos , Fragmentos de Peptídeos/metabolismo , Peptídeos/farmacologia , Prognóstico , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Sci Rep ; 6: 36570, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27827394

RESUMO

Intracellular Ca2+ signaling regulates cell migration by acting on cytoskeleton architecture, cell directionality and focal adhesions dynamics. In migrating cells, cytosolic Ca2+ pool and Ca2+ pulses are described as key components of these effects. Whereas the role of the mitochondrial calcium homeostasis and the Mitochondria Cacium Uniporter (MCU) in cell migration were recently highlighted in vivo using the zebrafish model, their implication in actin cystokeleton dynamics and cell migration in mammals is not totally characterized. Here, we show that mcu silencing in two human cell lines compromises their migration capacities. This phenotype is characterized by actin cytoskeleton stiffness, a cell polarization loss and an impairment of the focal adhesion proteins dynamics. At the molecular level, these effects appear to be mediated by the reduction of the ER and cytosolic Ca2+ pools, which leads to a decrease in Rho-GTPases, RhoA and Rac1, and Ca2+-dependent Calpain activites, but seem to be independent of intracellular ATP levels. Together, this study highlights the fundamental and evolutionary conserved role of the mitochondrial Ca2+ homeostasis in cytoskeleton dynamics and cell migration.


Assuntos
Citoesqueleto de Actina/metabolismo , Cálcio/metabolismo , Movimento Celular , Mitocôndrias/metabolismo , Animais , Polaridade Celular , Regulação para Baixo , Adesões Focais , Modelos Animais , Peixe-Zebra
9.
Cancer Res ; 73(22): 6621-31, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24078802

RESUMO

Epithelial-to-mesenchymal transition (EMT) is a transdifferentiation process that converts epithelial cells into highly motile mesenchymal cells. This physiologic process occurs largely during embryonic development but is aberrantly reactivated in different pathologic situations, including fibrosis and cancer. We conducted a siRNA screening targeted to the human kinome with the aim of discovering new EMT effectors. With this approach, we have identified mTOR complex 1 (mTORC1), a nutrient sensor that controls protein and lipid synthesis, as a key regulator of epithelial integrity. Using a combination of RNAi and pharmacologic approaches, we report here that inhibition of either mTOR or RPTOR triggers EMT in mammary epithelial cells. This EMT was characterized by the induction of the mesenchymal markers such as fibronectin, vimentin, and PAI-1, together with the repression of epithelial markers such as E-cadherin and ZO-3. In addition, mTORC1 blockade enhanced in vivo migratory properties of mammary cells and induced EMT independent of the TGF-ß pathway. Finally, among the transcription factors known to activate EMT, both ZEB1 and ZEB2 were upregulated following mTOR repression. Their increased expression correlated with a marked reduction in miR-200b and miR-200c mRNA levels, two microRNAs known to downregulate ZEB1 and ZEB2 expression. Taken together, our findings unravel a novel function for mTORC1 in maintaining the epithelial phenotype and further indicate that this effect is mediated through the opposite regulation of ZEB1/ZEB2 and miR-200b and miR-200c. Furthermore, these results suggest a plausible etiologic explanation for the progressive pulmonary fibrosis, a frequent adverse condition associated with the therapeutic use of mTOR inhibitors.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Complexos Multiproteicos/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Células Cultivadas , Embrião de Galinha , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Células MCF-7 , Alvo Mecanístico do Complexo 1 de Rapamicina , MicroRNAs/metabolismo , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Invasividade Neoplásica , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Proteínas Repressoras/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/fisiologia , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco
10.
Nat Commun ; 4: 2330, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23942336

RESUMO

Bcl-2 proteins are acknowledged as key regulators of programmed cell death. However, increasing data suggest additional roles, including regulation of the cell cycle, metabolism and cytoskeletal dynamics. Here we report the discovery and characterization of a new Bcl-2-related multidomain apoptosis accelerator, Bcl-wav, found in fish and frogs. Genetic and molecular studies in zebrafish indicate that Bcl-wav and the recently identified mitochondrial calcium uniporter (MCU) contribute to the formation of the notochord axis by controlling blastomere convergence and extension movements during gastrulation. Furthermore, we found that Bcl-wav controls intracellular Ca(2+) trafficking by acting on the mitochondrial voltage-dependent anion channel, and possibly on MCU, with direct consequences on actin microfilament dynamics and blastomere migration guidance. Thus, from an evolutionary point of view, the original function of Bcl-2 proteins might have been to contribute in controlling the global positioning system of blastomeres during gastrulation, a critical step in metazoan development.


Assuntos
Canais de Cálcio/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Peixe-Zebra/embriologia , Actinas/genética , Sequência de Aminoácidos , Animais , Apoptose/genética , Transporte Biológico/genética , Blastômeros/metabolismo , Cálcio/metabolismo , Canais de Cálcio/genética , Movimento Celular/genética , Células Cultivadas , Gástrula/embriologia , Gastrulação/genética , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Camundongos , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Morfogênese , Morfolinos/genética , Notocorda/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Canal de Ânion 1 Dependente de Voltagem/genética
11.
Nephrol Dial Transplant ; 26(4): 1205-10, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20817669

RESUMO

BACKGROUND: A decrease in renal oxygen content can be measured non-invasively by the increase of the R2* value derived from blood oxygen level-dependent magnetic resonance imaging (BOLD MRI). The aim of this study was to test if renal hypoxia occurs in kidneys downstream a chronic and unilateral renal artery stenosis. METHODS: Chronic renal ischaemia was induced in rats using a calibrated clip inserted on the right renal artery. R2* was determined, using a multiple recalled gradient-echo sequence, before and once a week after a clip insertion over 4 weeks, in a group of clipped (n = 8) and sham-operated (n = 7) rats. RESULTS: At baseline, in stenotic kidneys, R2* was higher in the outer stripe of outer medulla (105 ± 4.6) and the outer medulla (99 ± 2.5) than in the cortex (84 ± 2.5; P < 0.002 for comparison with both areas). R2* was unchanged in the cortex, the outer stripe of outer medulla and the outer medulla in stenotic kidneys, sham-operated kidneys and contralateral kidneys during the 4 weeks. Mean blood pressure was higher in rats with clipped kidney than in sham-operated rats from Day 11 and remained increased thereafter. The renal volume increased progressively in sham-operated kidneys and contralateral kidneys, whereas it slightly decreased in stenotic kidneys. CONCLUSIONS: Our study shows that after 4 weeks, no renal hypoxia can be detected in the kidney downstream to a renal artery stenosis, suggesting that atrophy could be induced by other factors.


Assuntos
Hipóxia/etiologia , Imageamento por Ressonância Magnética , Oxigênio/metabolismo , Obstrução da Artéria Renal/complicações , Artéria Renal/fisiopatologia , Animais , Doença Crônica , Diuréticos/administração & dosagem , Furosemida/administração & dosagem , Hipóxia/tratamento farmacológico , Masculino , Consumo de Oxigênio , Ratos , Ratos Sprague-Dawley
12.
Toxicol Appl Pharmacol ; 242(1): 9-17, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19747499

RESUMO

As part of a study on uranium nephrotoxicity, we investigated the effect of uranyl nitrate in isolated human and mouse kidney cortex tubules metabolizing the physiological substrate lactate. In the millimolar range, uranyl nitrate reduced lactate removal and gluconeogenesis and the cellular ATP level in a dose-dependent fashion. After incubation in phosphate-free Krebs-Henseleit medium with 5 mM L-[1-13C]-, or L-[2-13C]-, or L-[3-13C]lactate, substrate utilization and product formation were measured by enzymatic and NMR spectroscopic methods. In the presence of 3 mM uranyl nitrate, glucose production and the intracellular ATP content were significantly reduced in both human and mouse tubules. Combination of enzymatic and NMR measurements with a mathematical model of lactate metabolism revealed an inhibition of fluxes through lactate dehydrogenase and the gluconeogenic enzymes in the presence of 3 mM uranyl nitrate; in human and mouse tubules, fluxes were lowered by 20% and 14% (lactate dehydrogenase), 27% and 32% (pyruvate carboxylase), 35% and 36% (phosphoenolpyruvate carboxykinase), and 39% and 45% (glucose-6-phosphatase), respectively. These results indicate that natural uranium is an inhibitor of renal lactate gluconeogenesis in both humans and mice.


Assuntos
Gluconeogênese/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Ácido Láctico/metabolismo , Nitrato de Uranil/farmacologia , Trifosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Animais , Biotransformação , Relação Dose-Resposta a Droga , Humanos , Técnicas In Vitro , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/enzimologia , Espectroscopia de Ressonância Magnética , Camundongos
13.
J Urol ; 180(1): 388-91, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18499158

RESUMO

PURPOSE: We determined the role of ischemic preconditioning on renal function and histology in a rat model. MATERIALS AND METHODS: A total of 34 Sprague-Dawley rats (Janvier Laboratories, Le Genet-St-Isle, France) were divided into 6 groups, including sham operation, ischemic preconditioning alone (5 minutes of bilateral ischemia followed by 5 minutes of reperfusion for 3 cycles), ischemia alone (60 minutes of bilateral renal pedicle clamping), ischemic preconditioning before bilateral ischemia, ischemic preconditioning before ischemia in left nephrectomized rats and ischemic preconditioning of the left kidney alone before 60 minutes of bilateral warm ischemia to assess the effect of left kidney preconditioning on the contralateral kidney. Serum creatinine and malondialdehyde levels were recorded at days 0, 1, 3, 11 and 15. Kidneys were harvested at day 15 for histological study and alpha-smooth muscle actin typing. RESULTS: At days 1 and 3 serum creatinine and malondialdehyde levels were significantly lower in the ischemic preconditioning group compared to levels in the ischemia alone group. At days 11 and 15 creatinine and malondialdehyde levels were similar in all groups and comparable to levels at day 0. At day 15 ischemic preconditioning kidneys showed significantly decreased fibrosis and alpha-smooth muscle actin expression than ischemia alone kidneys. CONCLUSIONS: Ischemic preconditioning improves the ability of rat kidney to tolerate subsequent ischemic injury in the first 3 days after reperfusion. Moreover, fibrosis and alpha-smooth muscle actin expression are decreased in ischemic preconditioning kidneys 15 days after reperfusion, suggesting a potential interest of ischemic preconditioning in surgical situations that expose kidneys to prolonged warm ischemia.


Assuntos
Actinas/biossíntese , Precondicionamento Isquêmico , Rim/fisiologia , Isquemia Quente , Animais , Rim/patologia , Modelos Animais , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...