Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 339(2): 275-84, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19744664

RESUMO

The adsorption of two anionic dyes, Remazol Black B (RB5) and Acidol Red 2BE-NW (AR42), onto a microporous activated carbon felt was investigated. The characterization of carbon surface chemistry by X-ray microanalysis, Boehm titrations, and pH-PZC measurements indicates that the surface oxygenated groups are mainly acidic. The rate of adsorption depends on the pH and the experimental data fit the intraparticle diffusion model. The pore size distribution obtained by DFT analysis shows that the mean pore size is close to 1nm, which indicates that a slow intraparticle diffusion process control the adsorption. The adsorption isotherms were measured for different pH values. The Khan and the Langmuir-Freundlich models lead to the best agreement with experimental data for RB5 and AR42, respectively. These isotherm simulations and the pH dependence of adsorption show that the adsorption capacity is mainly controlled by nondispersive electrostatic interactions for pH values below 4. The adsorption kinetics, the irreversibility of the process, and the influence of the pH indicate that the rate of adsorption in this microporous felt proceeds through two steps. The first one is fast and results from direct interaction of dye molecules with the external surface of the carbon material (which account for 10% of the whole surface area); in the second, slow step, the adsorption rate is controlled by the slow diffusion of dye molecules into the narrow micropores. The influence of temperature on the adsorption isotherms was studied and the thermodynamic parameters were obtained. They show that the process is spontaneous and exothermic.

2.
Colloids Surf B Biointerfaces ; 73(2): 168-74, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19535230

RESUMO

The protein adsorption capacity of porous sorbents is generally obtained by measuring the concentration of proteins desorbed from the materials after treatment by a detergent, or by measuring the decrease of protein concentration in the solution. These methods have some drawbacks and often lead to a low precision in the determination of the adsorption capacities. We describe in this paper a new method that allows to directly quantify the amount of proteins adsorbed on porous materials. This method is based on the quantitative analysis by mass spectrometry of some low mass gaseous species which evolve from the biomolecules during the heat treatment of a temperature-programmed desorption analysis (TPD-MS). The method has been applied to bovine serum albumin and cytochrome C adsorbed on an activated carbon. The adsorption uptake of the proteins on the carbon material could be measured by this direct analysis. A comparison with the depletion method was done, it shows that the two methods are complementary. The depletion method allows a determination of the total adsorption capacity, while the TPD-MS method focus on irreversible capacity.


Assuntos
Técnicas de Química Analítica/métodos , Nanoestruturas/química , Proteínas/análise , Temperatura , Adsorção , Animais , Calibragem , Bovinos , Carvão Vegetal/química , Citocromos c/análise , Cavalos , Humanos , Porosidade , Reprodutibilidade dos Testes , Soroalbumina Bovina/análise
3.
Langmuir ; 22(10): 4614-9, 2006 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-16649772

RESUMO

Two mesoporous ordered carbon materials (MOCs) have been synthesized from silica templates by using sucrose as the carbon precursor. The textural characterization using Ar, N2, and CO2 adsorption combined with neutron diffraction showed that the two samples exhibit a significant microporous volume close to 0.5 cm3/g and an ordered network of mesopores. For both MCM48 and SBA15 templated carbons, adsorption first proceeds with the filling of micropores and then by the filling of mesopores with an adsorption energy close to the enthalpy of vaporization of bulk hydrogen. The hydrogen isosteric heat of adsorption in the micropores (6-8 kJ/mol) is significantly larger than that on the graphite surface (approximately 4 kJ/mol) but still too small for a reasonable use of these MOCs as hydrogen adsorbents for storage at room temperature. The neutron scattering study showed that the structure at 10 K of the adsorbed deuterium phase is poorly organized; it exhibits short and medium range orders of about 13 angstroms in micropores and about 20 angstroms in mesopores, respectively. The average distance between adsorbed molecules decreases with coverage by about 10%. In the mesopores, the diffracted line is consistent with a pseudohexagonal packing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...