Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 23(22): 22701-22710, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27557973

RESUMO

The response of soil respiration (Rs) to nitrogen (N) addition is one of the uncertainties in modelling ecosystem carbon (C). We reported on a long-term nitrogen (N) addition experiment using urea (CO(NH2)2) fertilizer in which Rs was continuously measured after N addition during the growing season in a Chinese pine forest. Four levels of N addition, i.e. no added N (N0: 0 g N m-2 year-1), low-N (N1: 5 g N m-2 year-1), medium-N (N2: 10 g N m-2 year-1), and high-N (N3: 15 g N m-2 year-1), and three organic matter treatments, i.e. both aboveground litter and belowground root removal (LRE), only aboveground litter removal (LE), and intact soil (CK), were examined. The Rs was measured continuously for 3 days following each N addition application and was measured approximately 3-5 times during the rest of each month from July to October 2012. N addition inhibited microbial heterotrophic respiration by suppressing soil microbial biomass, but stimulated root respiration and CO2 release from litter decomposition by increasing either root biomass or microbial biomass. When litter and/or root were removed, the "priming" effect of N addition on the Rs disappeared more quickly than intact soil. This is likely to provide a point of view for why Rs varies so much in response to exogenous N and also has implications for future determination of sampling interval of Rs measurement.


Assuntos
Bactérias/metabolismo , Nitrogênio/metabolismo , Pinus/crescimento & desenvolvimento , Biomassa , Dióxido de Carbono/metabolismo , Ecossistema , Florestas , Nitrogênio/análise , Pinus/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Estações do Ano , Solo/química , Microbiologia do Solo
2.
PLoS One ; 10(5): e0126337, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25970791

RESUMO

Alteration in the amount of soil organic matter input can have profound effect on carbon dynamics in forest soils. The objective of our research was to determine the response in soil respiration to above- and belowground organic matter manipulation in a Chinese pine (Pinus tabulaeformis) plantation. Five organic matter treatments were applied during a 2-year experiment: both litter removal and root trenching (LRRT), only litter removal (LR), control (CK), only root trenching (RT) and litter addition (LA). We found that either aboveground litter removal or root trenching decreased soil respiration. On average, soil respiration rate was significantly decreased in the LRRT treatment, by about 38.93% ± 2.01% compared to the control. Soil respiration rate in the LR treatment was 30.65% ± 1.87% and in the RT treatment 17.65% ± 1.95% lower than in the control. Litter addition significantly increased soil respiration rate by about 25.82% ± 2.44% compared to the control. Soil temperature and soil moisture were the main factors affecting seasonal variation in soil respiration. Up to the 59.7% to 82.9% seasonal variation in soil respiration is explained by integrating soil temperature and soil moisture within each of the various organic matter treatments. The temperature sensitivity parameter, Q10, was higher in the RT (2.72) and LA (3.19) treatments relative to the control (2.51), but lower in the LRRT (1.52) and LR treatments (1.36). Our data suggest that manipulation of soil organic matter input can not only alter soil CO2 efflux, but also have profound effect on the temperature sensitivity of organic carbon decomposition in a temperate pine forest.


Assuntos
Dióxido de Carbono/química , Florestas , Pinus/fisiologia , Solo/química , Ciclo do Carbono , China , Clima , Raízes de Plantas/fisiologia , Estações do Ano , Microbiologia do Solo
3.
Plant Reprod ; 28(2): 111-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25784321

RESUMO

KEY MESSAGE: Trade-off in dioecious plant. The trade-off between reproduction, vegetative growth and maintenance is a major issue in the life history of an organism and a record of the process which is producing the largest possible number of living offspring by natural selection. Dioecious species afford an excellent opportunity for detecting such possible trade-offs in resource allocation. In this study, we selected the dioecious shrub Acer barbinerve to examine possible trade-offs between reproduction and vegetative growth in both genders at different modular levels during three successive years. Reproductive and vegetative biomass values were assessed during successive years to evaluate their intra-annual and inter-annual trade-offs. These trade-offs were examined at shoot, branch and shrub modular levels in Acer barbinerve shrubs. An intra-annual trade-off was detected at the shoot level for both genders in 2011 and 2012. Both males and females showed a negative correlation between reproduction and vegetative growth, but this was more prominent in males. For the females of the species, inter-annual trade-offs were only found at branch and shrub levels. Slightly negative correlations in females were detected between the reproduction in 2012 and the reproduction in the two previous years. The gender ratio was significantly male biased during the three successive years of our investigation. Females had higher mortality rates in the larger diameter classes, both in 2011 and 2012. This study revealed a clear trade-off between reproduction and vegetative growth in Acer barbinerve, but results varied between males and females. The degree of autonomy of the different modular levels may affect the ability to detect such trade-offs.


Assuntos
Acer/crescimento & desenvolvimento , Reprodução , Acer/genética , Acer/fisiologia , Biomassa , China , Ecossistema , Células Germinativas Vegetais/crescimento & desenvolvimento , Células Germinativas Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura
4.
PLoS One ; 8(12): e81140, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24324665

RESUMO

The reproductive success of a female plant in a dioecious species may be affected by pollen limitation and resource limitation. This study presents evidence that the reproductive success of the dioecious understorey tree species, Rhamnus davurica, is affected by the distance to the nearest male. The sex ratios were female-biased, although showing fluctuations in the three years of conducting the study. The mortality rate of females was higher than that of males indicating a trade-off between reproduction and survival. Altogether 49 females, designated as "focal females", were randomly selected for monitoring their reproductive status between April and October in 2010. But successful reproduction (meaning that the flowering female trees had fruit in the fruiting season) was observed only in 28 females in 2011 and 16 females in 2012. The method of path analysis was applied to determine the effect of topography, local competition and proximity to the nearest male on the fruit set of the females. In the three years of the study, elevation, competition and female size had no significant effect on the fruit set. The distance to the nearest male, however, had a significant effect on fruit set. Number of fruits and fruit set were decreased with increasing distance to the nearest male. It was possible to estimate maximum fruit set, based on the comparatively large dataset. The number of fruits and the fruit set are exponentially related to the distance to the nearest male and the relationships are described by an exponential model. The results of this study support the importance of pollen limitation on the reproductive success in Rhamnus davurica.


Assuntos
Flores/fisiologia , Aptidão Genética/fisiologia , Pólen/fisiologia , Rhamnus/fisiologia , Frutas/crescimento & desenvolvimento , Reprodução , Estações do Ano , Razão de Masculinidade , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...