Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(21): 5479-5482, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910682

RESUMO

We report on the experimental development of short-tapered chalcogenide-glass rods for mid-infrared supercontinuum generation. Multi-octave spectral broadening of femtosecond laser pulses is demonstrated from 1.6 to 15.6 µm in a 5-cm-long tapered Ge20Se70Te10 rod with a waist diameter of 25 µm. Despite the multimode nature of the optical waveguide used, this work clearly shows the potential of such simple post-processed rods for advancing fiber SC sources with infrared glasses, thereby unlocking new possibilities in terms of coupling efficiency, spectral coverage, and output power.

2.
Nat Commun ; 14(1): 6561, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848490

RESUMO

Adaptative objects based on shape-memory materials are expected to significantly impact numerous technological sectors including optics and photonics. In this work, we demonstrate the manufacturing of shape-memory optical fibers from the thermal stretching of additively manufactured preforms. First, we show how standard commercially-available thermoplastics can be used to produce long continuously-structured microfilaments with shape-memory abilities. Shape recovery as well as programmability performances of such elongated objects are assessed. Next, we open the way for light-guiding multicomponent fiber architectures that are able to switch from temporary configurations back to user-defined programmed shapes. In particular, we show that distinct designs of fabricated optical fibers can maintain efficient light transmission upon completion of multiple temperature-triggered bending/straightening cycles. Such fibers are also programmed into more complex shapes including coils or near 180 ° curvatures for delivering laser light around obstacles. Finally, a shape-memory exposed-core fiber is employed in fiber evanescent wave spectroscopy experiments to optimize the performance of the sensing scheme. We strongly expect that such actuatable fibers with light-guiding abilities will trigger exciting progress of unprecedented smart devices in the areas of photonics, electronics, or robotics.

3.
Sci Rep ; 13(1): 5092, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991075

RESUMO

Among the different fundamental aspects that govern the design and development of elongated multimaterial structures via the preform-to-fiber technique, material association methodologies hold a crucial role. They greatly impact the number, complexity and possible combinations of functions that can be integrated within single fibers, thus defining their applicability. In this work, a co-drawing strategy to produce monofilament microfibers from unique glass-polymer associations is investigated. In particular, the molten core-method (MCM) is applied to several amorphous and semi-crystalline thermoplastics for their integration within larger glass architectures. General conditions in which the MCM can be employed are established. It is demonstrated that the classical glass transition temperature compatibility requirements for glass-polymer associations can be overcome, and that other glass compositions than chalcogenides can be thermally stretched with thermoplastics, here oxide glasses are considered. Composite fibers with various geometries and compositional profiles are then presented to illustrate the versatility of the proposed methodology. Finally, investigations are focused on fibers produced from the association of poly ether ether ketone (PEEK) with tellurite and phosphate glasses. It is demonstrated that upon appropriate elongation conditions, the crystallization kinetics of PEEK can be controlled during the thermal stretching and crystallinities of the polymer as low as 9 mass. % are reached in the final fiber. It is believed such novel material associations as well as the ability to tailor material properties within fibers could inspire the development of a new class of hybrid elongated objects with unprecedented functionalities.

4.
Materials (Basel) ; 15(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35161120

RESUMO

Glasses in the TeO2-ZnO-Y2O3 (TZY) ternary system are examined in the present work. The vitrification domain of the chosen oxide matrix is determined and differential scanning calorimetry as well as X-ray diffraction measurements are carried out. The material characterizations reveal that Y2O3 incorporation cannot exceed 5 mol.% without causing detrimental crystallization within the glass. Optical transmission and refractive index investigations are conducted on compositions yielding fully amorphous samples. Next, the fiber drawing ability of selected yttrium-containing zinc-tellurite glasses is assessed and fiber-attenuation measurements in the mid-infrared are presented. Finally, a multimode step-index fiber is fabricated by combining a TZY cladding glass with a La2O3-based tellurite core glass. It is believed that yttrium-containing glasses could prove useful in association with other high glass transition temperature (>300 °C) TeO2-based materials for the design of robust optical fibers with precisely engineered refractive index profiles.

5.
Opt Lett ; 42(2): 247-250, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28081084

RESUMO

We report numerical and experimental demonstrations of flexible group-velocity dispersion regimes in step-index tellurite fibers by fine control of the fiber core diameter. Our simple fiber design allowed us to explore various nonlinear propagation regimes beyond 2 µm, which involved careful control of four-wave mixing processes. Combined with the recent development of 2 µm fiber lasers, we present an easy way to tailor supercontinuum generation and related coherence features in the high-demand 1.5-3.5 µm spectral region.

6.
Opt Lett ; 27(22): 2028-30, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18033434

RESUMO

The all-optical poling technique permits polar orientation of molecules. For efficient poling of thin films the relative phases, amplitudes, and polarizations of the two interfering beams must be controlled. We present an original stable one-arm interferometer that is specific to the recording of two-color interference. It relies on the index dispersion of optical glasses. This interference technique permits true real-time nonperturbative monitoring of the polar orientation process and easy all-optical poling of thin-film materials without the need for phase control. This new configuration opens the door to the realization of customized phase-matched wave-guided frequency-conversion devices for the near infrared.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...