Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Eur J Radiol ; 156: 110494, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36095953

RESUMO

BACKGROUND: Multi-parametric magnetic resonance imaging (mp-MRI) is emerging as a useful tool for prostate cancer (PCa) detection but currently has unaddressed limitations. Computer aided diagnosis (CAD) systems have been developed to address these needs, but many approaches used to generate and validate the models have inherent biases. METHOD: All clinically significant PCa on histology was mapped to mp-MRI using a previously validated registration algorithm. Shape and size matched non-PCa regions were selected using a proposed sampling algorithm to eliminate biases towards shape and size. Further analysis was performed to assess biases regarding inter-zonal variability. RESULTS: A 5-feature Naïve-Bayes classifier produced an area under the receiver operating characteristic curve (AUC) of 0.80 validated using leave-one-patient-out cross-validation. As mean inter-class area mismatch increased, median AUC trended towards positively biasing classifiers to producing higher AUCs. Classifiers were invariant to differences in shape between PCa and non-PCa lesions (AUC: 0.82 vs 0.82). Performance for models trained and tested only in the peripheral zone was found to be lower than in the central gland (AUC: 0.75 vs 0.95). CONCLUSION: We developed a radiomics based machine learning system to classify PCa vs non-PCa tissue on mp-MRI validated on accurately co-registered mid-gland histology with a measured target registration error. Potential biases involved in model development were interrogated to provide considerations for future work in this area.

2.
EJNMMI Res ; 11(1): 107, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34652551

RESUMO

PURPOSE: Localized prostate cancer (PCa) in patients is characterized by a dominant focus in the gland (dominant intraprostatic lesion, DIL). Accurate DIL identification may enable more accurate diagnosis and therapy through more precise targeting of biopsy, radiotherapy and focal ablative therapies. The goal of this study is to validate the performance of [18F]DCFPyL PET and CT perfusion (CTP) for detecting and localizing DIL against digital histopathological images. METHODS: Multi-modality image sets: in vivo T2-weighted (T2w)-MRI, 22-min dynamic [18F]DCFPyL PET/CT, CTP, and 2-h post-injection PET/MR were acquired in patients prior to radical prostatectomy. The explanted gland with implanted fiducial markers was imaged with T2w-MRI. All images were co-registered to the pathologist-annotated digital images of whole-mount mid-gland histology sections using fiducial markers and anatomical landmarks. Regions of interest encompassing DIL and non-DIL tissue were drawn on the digital histopathological images and superimposed on PET and CTP parametric maps. Logistic regression with backward elimination of parameters was used to select the most sensitive parameter set to distinguish DIL from non-DIL voxels. Leave-one-patient-out cross-validation was performed to determine diagnostic performance. RESULTS: [18F]DCFPyL PET and CTP parametric maps of 15 patients were analyzed. SUVLate and a model combining Ki and k4 of [18F]DCFPyL achieved the most accurate performance distinguishing DIL from non-DIL voxels. Both detection models achieved an AUC of 0.90 and an error rate of < 10%. Compared to digital histopathology, the detected DILs had a mean dice similarity coefficient of 0.8 for the Ki and k4 model and 0.7 for SUVLate. CONCLUSIONS: We have validated using co-registered digital histopathological images that parameters from kinetic analysis of 22-min dynamic [18F]DCFPyL PET can accurately localize DILs in PCa for targeting of biopsy, radiotherapy, and focal ablative therapies. Short-duration dynamic [18F]DCFPyL PET was not inferior to SUVLate in this diagnostic task. CLINICAL TRIAL REGISTRATION NUMBER: NCT04009174 (ClinicalTrials.gov).

3.
Phys Imaging Radiat Oncol ; 19: 102-107, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34589619

RESUMO

BACKGROUND AND PURPOSE: Prostate specific membrane antigen positron emission tomography imaging (PSMA-PET) has demonstrated potential for intra-prostatic lesion localization. We leveraged our existing database of co-registered PSMA-PET imaging with cross sectional digitized pathology to model dose coverage of histologically-defined prostate cancer when tailoring brachytherapy dose escalation based on PSMA-PET imaging. MATERIALS AND METHODS: Using a previously-developed automated approach, we created segmentation volumes delineating underlying dominant intraprostatic lesions for ten men with co-registered pathology-imaging datasets. To simulate realistic high-dose-rate brachytherapy (HDR-BT) treatments, we registered the PSMA-PET-defined segmentation volumes and underlying cancer to 3D trans-rectal ultrasound images of HDR-BT cases where 15 Gray (Gy) was delivered. We applied dose/volume optimization to focally target the dominant intraprostatic lesion identified on PSMA-PET. We then compared histopathology dose for all high-grade cancer within whole-gland treatment plans versus PSMA-PET-targeted plans. Histopathology dose was analyzed for all clinically significant cancer with a Gleason score of 7or greater. RESULTS: The standard whole-gland plans achieved a median [interquartile range] D98 of 15.2 [13.8-16.4] Gy to the histologically-defined cancer, while the targeted plans achieved a significantly higher D98 of 16.5 [15.0-19.0] Gy (p = 0.007). CONCLUSION: This study is the first to use digital histology to confirm the effectiveness of PSMA-PET HDR-BT dose escalation using automatically generated contours. Based on the findings of this study, PSMA-PET lesion dose escalation can lead to increased dose to the ground truth histologically defined cancer.

4.
Ann Biomed Eng ; 49(2): 573-584, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32779056

RESUMO

Prostate cancer (PCa) is a common, serious form of cancer in men that is still prevalent despite ongoing developments in diagnostic oncology. Current detection methods lead to high rates of inaccurate diagnosis. We present a method to directly model and exploit temporal aspects of temporal enhanced ultrasound (TeUS) for tissue characterization, which improves malignancy prediction. We employ a probabilistic-temporal framework, namely, hidden Markov models (HMMs), for modeling TeUS data obtained from PCa patients. We distinguish malignant from benign tissue by comparing the respective log-likelihood estimates generated by the HMMs. We analyze 1100 TeUS signals acquired from 12 patients. Our results show improved malignancy identification compared to previous results, demonstrating over 85% accuracy and AUC of 0.95. Incorporating temporal information directly into the models leads to improved tissue differentiation in PCa. We expect our method to generalize and be applied to other types of cancer in which temporal-ultrasound can be recorded.


Assuntos
Modelos Teóricos , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico , Humanos , Masculino , Cadeias de Markov , Ultrassonografia
5.
Ann Biomed Eng ; 48(12): 3025, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32901381

RESUMO

The authors have noted an omission in the original acknowledgements. The correct acknowledgements are as follows: Acknowledgements: This work was partially supported by Grants from NSERC Discovery to Hagit Shatkay and Parvin Mousavi, NSERC and CIHR CHRP to Parvin Mousavi and NIH R01 LM012527, NIH U54 GM104941, NSF IIS EAGER #1650851 & NSF HDR #1940080 to Hagit Shatkay.

6.
Radiother Oncol ; 152: 34-41, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32827589

RESUMO

BACKGROUND: PSMA-PET1 has shown good concordance with histology, but there is a need to investigate the ability of PSMA-PET to delineate DIL2 boundaries for guided biopsy and focal therapy planning. OBJECTIVE: To determine threshold and margin combinations that satisfy the following criteria: ≥95% sensitivity with max specificity and ≥95% specificity with max sensitivity. DESIGN, SETTING AND PARTICIPANTS: We registered pathologist-annotated whole-mount mid-gland prostatectomy histology sections cut in 4.4 mm intervals from 12 patients to pre-surgical PSMA-PET/MRI by mapping histology to ex-vivo imaging to in-vivo imaging. We generated PET-derived tumor volumes using boundaries defined by thresholded PET volumes from 1-100% of SUV3max in 1% intervals. At each interval, we applied margins of 0-30 voxels in one voxel increments, giving 3000 volumes/patient. OUTCOME MEASUREMENTS: Mean and standard deviation of sensitivity and specificity for cancer detection within the 2D oblique histologic planes that intersected with the 3D PET volume for each patient. RESULTS AND LIMITATIONS: A threshold of 67% SUV max with an 8.4 mm margin achieved a (mean ± std.) sensitivity of 95.0 ± 7.8% and specificity of 76.4 ± 14.7%. A threshold of 81% SUV max with a 5.1 mm margin achieved sensitivity of 65.1 ± 28.4% and specificity of 95.1 ± 5.2%. CONCLUSIONS: Preliminary evidence of thresholding and margin expansion of PSMA-PET images targeted at DILs validated with histopathology demonstrated excellent mean sensitivity and specificity in the setting of focal therapy/boosting and guided biopsy. These parameters can be used in a larger validation study supporting clinical translation.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata , Humanos , Masculino , Tomografia por Emissão de Pósitrons , Prostatectomia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/cirurgia , Carga Tumoral
7.
J Med Imaging (Bellingham) ; 7(4): 047501, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32715024

RESUMO

Purpose: Automatic cancer detection on radical prostatectomy (RP) sections facilitates graphical and quantitative surgical pathology reporting, which can potentially benefit postsurgery follow-up care and treatment planning. It can also support imaging validation studies using a histologic reference standard and pathology research studies. This problem is challenging due to the large sizes of digital histopathology whole-mount whole-slide images (WSIs) of RP sections and staining variability across different WSIs. Approach: We proposed a calibration-free adaptive thresholding algorithm, which compensates for staining variability and yields consistent tissue component maps (TCMs) of the nuclei, lumina, and other tissues. We used and compared three machine learning methods for classifying each cancer versus noncancer region of interest (ROI) throughout each WSI: (1) conventional machine learning methods and 14 texture features extracted from TCMs, (2) transfer learning with pretrained AlexNet fine-tuned by TCM ROIs, and (3) transfer learning with pretrained AlexNet fine-tuned with raw image ROIs. Results: The three methods yielded areas under the receiver operating characteristic curve of 0.96, 0.98, and 0.98, respectively, in leave-one-patient-out cross validation using 1.3 million ROIs from 286 mid-gland whole-mount WSIs from 68 patients. Conclusion: Transfer learning with the use of TCMs demonstrated state-of-the-art overall performance and is more stable with respect to sample size across different tissue types. For the tissue types involving Gleason 5 (most aggressive) cancer, it achieved the best performance compared to the other tested methods. This tool can be translated to clinical workflow to assist graphical and quantitative pathology reporting for surgical specimens upon further multicenter validation.

8.
Sci Rep ; 10(1): 9911, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555410

RESUMO

Automatically detecting and grading cancerous regions on radical prostatectomy (RP) sections facilitates graphical and quantitative pathology reporting, potentially benefitting post-surgery prognosis, recurrence prediction, and treatment planning after RP. Promising results for detecting and grading prostate cancer on digital histopathology images have been reported using machine learning techniques. However, the importance and applicability of those methods have not been fully investigated. We computed three-class tissue component maps (TCMs) from the images, where each pixel was labeled as nuclei, lumina, or other. We applied seven different machine learning approaches: three non-deep learning classifiers with features extracted from TCMs, and four deep learning, using transfer learning with the 1) TCMs, 2) nuclei maps, 3) lumina maps, and 4) raw images for cancer detection and grading on whole-mount RP tissue sections. We performed leave-one-patient-out cross-validation against expert annotations using 286 whole-slide images from 68 patients. For both cancer detection and grading, transfer learning using TCMs performed best. Transfer learning using nuclei maps yielded slightly inferior overall performance, but the best performance for classifying higher-grade cancer. This suggests that 3-class TCMs provide the major cues for cancer detection and grading primarily using nucleus features, which are the most important information for identifying higher-grade cancer.


Assuntos
Algoritmos , Diagnóstico por Computador/métodos , Aprendizado de Máquina , Recidiva Local de Neoplasia/diagnóstico , Prostatectomia/métodos , Neoplasias da Próstata/classificação , Neoplasias da Próstata/patologia , Técnicas Histológicas , Humanos , Masculino , Gradação de Tumores , Recidiva Local de Neoplasia/cirurgia , Neoplasias da Próstata/cirurgia
9.
J Magn Reson Imaging ; 49(5): 1409-1419, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30430700

RESUMO

BACKGROUND: Overtreatment of prostate cancer (PCa) is a healthcare issue. Development of noninvasive imaging tools for improved characterization of prostate lesions might reduce overtreatment. PURPOSE: To measure the distribution of tissue sodium concentration (TSC), proton T2 -weighted signal, and apparent diffusion coefficient (ADC) values in human PCa and to test the presence of a correlation between regional differences in imaging metrics and the Gleason grade of lesions determined from histopathology. STUDY TYPE: Cross-sectional. SUBJECTS: Ten men with biopsy-proven PCa. SEQUENCES/FIELD STRENGTH: Sodium, proton T2 -weighted, and diffusion-weighted MRI data were acquired using Broad-Band 3D-Fast-Gradient-Recalled, 3D Cube (Isotropic 3D-Fast-Turbo-Spin-Echo acquisition) and 2D Spin-Echo sequences, respectively, with a 3.0T MR scanner. ASSESSMENT: All imaging data were coregistered to Gleason-graded postprostatectomy histology, as the standard for prostate cancer lesion characterization. Regional TSC and T2 data were assessed using percent changes from healthy tissue of the same patient (denoted ΔTSC, ΔT2 ). STATISTICS: Differences in ΔTSC, ADC, and ΔT2 as a function of Gleason score were analyzed for each imaging contrast using a one-way analysis of variance or a nonparametric t-test. Correlations between imaging data measures and Gleason score were assessed using a Spearman's ranked correlation. RESULTS: Evaluation of the correlation of ΔTSC, ADC, and ΔT2 datasets with Gleason scoring revealed that only the correlation between ΔTSC and Gleason score was statistically significant (rs = 0.791, p < 0.01), whereas the correlations of ADC and ΔT2 with Gleason score were not (rs = -0.306, p = 0.079 and r s = -0.069, p = 0.699, respectively). In addition, all individual patients showed monotonically increasing ΔTSC with Gleason score. DATA CONCLUSION: The results of this preliminary study suggest that changes in TSC, assessed by sodium MRI, has utility as a noninvasive imaging assay to accurately characterize PCa lesions. Sodium MRI may provide useful complementary information on mpMRI, which may assist the decision-making of men choosing either active surveillance or treatment. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:1409-1419.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Estudos Transversais , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Sódio
10.
IEEE Trans Biomed Eng ; 65(8): 1798-1809, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29989922

RESUMO

OBJECTIVES: Temporal enhanced ultrasound (TeUS) is a new ultrasound-based imaging technique that provides tissue-specific information. Recent studies have shown the potential of TeUS for improving tissue characterization in prostate cancer diagnosis. We study the temporal properties of TeUS-temporal order and length-and present a new framework to assess their impact on tissue information. METHODS: We utilize a probabilistic modeling approach using hidden Markov models (HMMs) to capture the temporal signatures of malignant and benign tissues from TeUS signals of nine patients. We model signals of benign and malignant tissues (284 and 286 signals, respectively) in their original temporal order as well as under order permutations. We then compare the resulting models using the Kullback-Liebler divergence and assess their performance differences in characterization. Moreover, we train HMMs using TeUS signals of different durations and compare their model performance when differentiating tissue types. RESULTS: Our findings demonstrate that models of order-preserved signals perform statistically significantly better (85% accuracy) in tissue characterization compared to models of order-altered signals (62% accuracy). The performance degrades as more changes in signal order are introduced. Additionally, models trained on shorter sequences perform as accurately as models of longer sequences. CONCLUSION: The work presented here strongly indicates that temporal order has substantial impact on TeUS performance; thus, it plays a significant role in conveying tissue-specific information. Furthermore, shorter TeUS signals can relay sufficient information to accurately distinguish between tissue types. SIGNIFICANCE: Understanding the impact of TeUS properties facilitates the process of its adopting in diagnostic procedures and provides insights on improving its acquisition.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Ultrassonografia/métodos , Humanos , Masculino , Cadeias de Markov , Sensibilidade e Especificidade , Processos Estocásticos
11.
Eur Urol Focus ; 4(5): 702-706, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28753797

RESUMO

An ongoing prospective study is acquiring preoperative imaging data for men with prostate cancer (PCa) using the molecular imaging agent [18F]-DCFPyL targeted against prostate-specific membrane antigen (PSMA). To date, six men (of a planned accrual of 24) with clinically localized, biopsy-proven PCa have undergone preoperative [18F]-DCFPyL positron emission tomography (PET) imaging and multiparametric magnetic resonance imaging acquired using a hybrid PET/MRI system. Lesions identified by [18F]-DCFPyL uptake on PET/MRI were characterized in terms of maximum standardized uptake value (SUVmax) and volume using a boundary threshold of 40% SUVmax. Following surgery, all prostatectomy specimens were processed using a whole-mount technique for accurate deformable co-registration and correlation with PCa foci defined on digitized pathology images. Well-defined intraprostatic dominant lesions were identified by [18F]-DCFPyL PET/MRI (mean SUVmax 11.4±8.25; mean volume 2.2±2.4cm3) in all six men. Co-registered digitized whole-mount pathology for the first case revealed that intense [18F]-DCFPyL uptake (SUVmax 27±1.1cm3) and multiparametric MRI changes (Prostate Imaging Reporting and Data System score of 4) were highly correlated with a 0.5-cm3 dominant (largest) lesion with Gleason pattern 4 PCa in the right mid peripheral zone. A smaller focus (0.01cm3) of lower-grade PCa (Gleason pattern 3) had much lower uptake (SUV 2.7). These early prospective data show that dominant intraprostatic lesions could be identified in all six men using [18F]-DCFPyL as an imaging probe. Trial accrual will continue to quantify in terms of spatial concordance the ability of [18F]-DCFPyL to identify the location and characterize the grade of intraprostatic cancer foci in clinically localized PCa. PATIENT SUMMARY: Positron emission tomography using a novel probe called [18F]-DCFPyL directed against the prostate-specific membrane antigen protein was able to identify locations of prostate cancer in the prostate glands of men undergoing imaging before surgery. In the future, such imaging may allow better targeting of treatment to the portion of the prostate containing the most aggressive components of cancer rather than treating the whole prostate in a uniform fashion.


Assuntos
Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Idoso , Antígenos de Superfície/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Molecular/métodos , Cuidados Pré-Operatórios/normas , Estudos Prospectivos , Próstata/patologia , Próstata/cirurgia , Prostatectomia/métodos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia
12.
Int J Radiat Oncol Biol Phys ; 96(1): 188-96, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27375167

RESUMO

PURPOSE: Defining prostate cancer (PCa) lesion clinical target volumes (CTVs) for multiparametric magnetic resonance imaging (mpMRI) could support focal boosting or treatment to improve outcomes or lower morbidity, necessitating appropriate CTV margins for mpMRI-defined gross tumor volumes (GTVs). This study aimed to identify CTV margins yielding 95% coverage of PCa tumors for prospective cases with high likelihood. METHODS AND MATERIALS: Twenty-five men with biopsy-confirmed clinical stage T1 or T2 PCa underwent pre-prostatectomy mpMRI, yielding T2-weighted, dynamic contrast-enhanced, and apparent diffusion coefficient images. Digitized whole-mount histology was contoured and registered to mpMRI scans (error ≤2 mm). Four observers contoured lesion GTVs on each mpMRI scan. CTVs were defined by isotropic and anisotropic expansion from these GTVs and from multiparametric (unioned) GTVs from 2 to 3 scans. Histologic coverage (proportions of tumor area on co-registered histology inside the CTV, measured for Gleason scores [GSs] ≥6 and ≥7) and prostate sparing (proportions of prostate volume outside the CTV) were measured. Nonparametric histologic-coverage prediction intervals defined minimal margins yielding 95% coverage for prospective cases with 78% to 92% likelihood. RESULTS: On analysis of 72 true-positive tumor detections, 95% coverage margins were 9 to 11 mm (GS ≥ 6) and 8 to 10 mm (GS ≥ 7) for single-sequence GTVs and were 8 mm (GS ≥ 6) and 6 mm (GS ≥ 7) for 3-sequence GTVs, yielding CTVs that spared 47% to 81% of prostate tissue for the majority of tumors. Inclusion of T2-weighted contours increased sparing for multiparametric CTVs with 95% coverage margins for GS ≥6, and inclusion of dynamic contrast-enhanced contours increased sparing for GS ≥7. Anisotropic 95% coverage margins increased the sparing proportions to 71% to 86%. CONCLUSIONS: Multiparametric magnetic resonance imaging-defined GTVs expanded by appropriate margins may support focal boosting or treatment of PCa; however, these margins, accounting for interobserver and intertumoral variability, may preclude highly conformal CTVs. Multiparametric GTVs and anisotropic margins may reduce the required margins and improve prostate sparing.


Assuntos
Imageamento por Ressonância Magnética/normas , Margens de Excisão , Guias de Prática Clínica como Assunto , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/cirurgia , Cirurgia Assistida por Computador/normas , Idoso , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Imagem Multimodal/métodos , Prostatectomia/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento , Carga Tumoral
13.
IEEE Trans Med Imaging ; 34(11): 2248-57, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25935029

RESUMO

UNLABELLED: This paper presents the results of a computer-aided intervention solution to demonstrate the application of RF time series for characterization of prostate cancer, in vivo. METHODS: We pre-process RF time series features extracted from 14 patients using hierarchical clustering to remove possible outliers. Then, we demonstrate that the mean central frequency and wavelet features extracted from a group of patients can be used to build a nonlinear classifier which can be applied successfully to differentiate between cancerous and normal tissue regions of an unseen patient. RESULTS: In a cross-validation strategy, we show an average area under receiver operating characteristic curve (AUC) of 0.93 and classification accuracy of 80%. To validate our results, we present a detailed ultrasound to histology registration framework. CONCLUSION: Ultrasound RF time series results in differentiation of cancerous and normal tissue with high AUC.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Área Sob a Curva , Estudos de Viabilidade , Humanos , Masculino , Reprodutibilidade dos Testes , Ultrassonografia
14.
IEEE Trans Biomed Eng ; 62(7): 1796-1804, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25720016

RESUMO

OBJECTIVE: This paper presents the results of a new approach for selection of RF time series features based on joint independent component analysis for in vivo characterization of prostate cancer. METHODS: We project three sets of RF time series features extracted from the spectrum, fractal dimension, and the wavelet transform of the ultrasound RF data on a space spanned by five joint independent components. Then, we demonstrate that the obtained mixing coefficients from a group of patients can be used to train a classifier, which can be applied to characterize cancerous regions of a test patient. RESULTS: In a leave-one-patient-out cross validation, an area under receiver operating characteristic curve of 0.93 and classification accuracy of 84% are achieved. CONCLUSION: Ultrasound RF time series can be used to accurately characterize prostate cancer, in vivo without the need for exhaustive search in the feature space. SIGNIFICANCE: We use joint independent component analysis for systematic fusion of multiple sets of RF time series features, within a machine learning framework, to characterize PCa in an in vivo study.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Neoplasias da Próstata/diagnóstico por imagem , Humanos , Masculino , Modelos Estatísticos , Próstata/diagnóstico por imagem , Ultrassonografia , Análise de Ondaletas
15.
IEEE Trans Med Imaging ; 32(10): 1804-18, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23739794

RESUMO

Radical prostatectomy is performed on approximately 40% of men with organ-confined prostate cancer. Pathologic information obtained from the prostatectomy specimen provides important prognostic information and guides recommendations for adjuvant treatment. The current pathology protocol in most centers involves primarily qualitative assessment. In this paper, we describe and evaluate our system for automatic prostate cancer detection and grading on hematoxylin & eosin-stained tissue images. Our approach is intended to address the dual challenges of large data size and the need for high-level tissue information about the locations and grades of tumors. Our system uses two stages of AdaBoost-based classification. The first provides high-level tissue component labeling of a superpixel image partitioning. The second uses the tissue component labeling to provide a classification of cancer versus noncancer, and low-grade versus high-grade cancer. We evaluated our system using 991 sub-images extracted from digital pathology images of 50 whole-mount tissue sections from 15 prostatectomy patients. We measured accuracies of 90% and 85% for the cancer versus noncancer and high-grade versus low-grade classification tasks, respectively. This system represents a first step toward automated cancer quantification on prostate digital histopathology imaging, which could pave the way for more accurately informed postprostatectomy patient care.


Assuntos
Inteligência Artificial , Técnicas Histológicas/métodos , Interpretação de Imagem Assistida por Computador/métodos , Próstata/patologia , Neoplasias da Próstata/diagnóstico , Humanos , Masculino , Prognóstico , Próstata/cirurgia , Prostatectomia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia
16.
Med Image Comput Comput Assist Interv ; 16(Pt 2): 279-86, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24579151

RESUMO

UNLABELLED: This paper presents the results of an in vivo clinical study to accurately characterize prostate cancer using new features of ultrasound RF time series. METHODS: The mean central frequency and wavelet features of ultrasound RF time series from seven patients are used along with an elaborate framework of ultrasound to histology registration to identify and verify cancer in prostate tissue regions as small as 1.7 mm x 1.7 mm. RESULTS: In a leave-one-patient-out cross-validation strategy, an average classification accuracy of 76% and the area under ROC curve of 0.83 are achieved using two proposed RF time series features. The results statistically significantly outperform those achieved by previously reported features in the literature. The proposed features show the clinical relevance of RF time series for in vivo characterization of cancer.


Assuntos
Algoritmos , Inteligência Artificial , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Neoplasias da Próstata/diagnóstico por imagem , Técnica de Subtração , Ultrassonografia/métodos , Estudos de Viabilidade , Humanos , Aumento da Imagem/métodos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
J Pathol Inform ; 4: 31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24392245

RESUMO

BACKGROUND: Guidelines for localizing prostate cancer on imaging are ideally informed by registered post-prostatectomy histology. 3D histology reconstruction methods can support this by reintroducing 3D spatial information lost during histology processing. The need to register small, high-grade foci drives a need for high accuracy. Accurate 3D reconstruction method design is impacted by the answers to the following central questions of this work. (1) How does prostate tissue deform during histology processing? (2) What spatial misalignment of the tissue sections is induced by microtome cutting? (3) How does the choice of reconstruction model affect histology reconstruction accuracy? MATERIALS AND METHODS: Histology, paraffin block face and magnetic resonance images were acquired for 18 whole mid-gland tissue slices from six prostates. 7-15 homologous landmarks were identified on each image. Tissue deformation due to histology processing was characterized using the target registration error (TRE) after landmark-based registration under four deformation models (rigid, similarity, affine and thin-plate-spline [TPS]). The misalignment of histology sections from the front faces of tissue slices was quantified using manually identified landmarks. The impact of reconstruction models on the TRE after landmark-based reconstruction was measured under eight reconstruction models comprising one of four deformation models with and without constraining histology images to the tissue slice front faces. RESULTS: Isotropic scaling improved the mean TRE by 0.8-1.0 mm (all results reported as 95% confidence intervals), while skew or TPS deformation improved the mean TRE by <0.1 mm. The mean misalignment was 1.1-1.9(°) (angle) and 0.9-1.3 mm (depth). Using isotropic scaling, the front face constraint raised the mean TRE by 0.6-0.8 mm. CONCLUSIONS: For sub-millimeter accuracy, 3D reconstruction models should not constrain histology images to the tissue slice front faces and should be flexible enough to model isotropic scaling.

18.
J Magn Reson Imaging ; 36(6): 1402-12, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22851455

RESUMO

PURPOSE: To present and evaluate a method for registration of whole-mount prostate digital histology images to ex vivo magnetic resonance (MR) images. MATERIALS AND METHODS: Nine radical prostatectomy specimens were marked with 10 strand-shaped fiducial markers per specimen, imaged with T1- and T2-weighted 3T MRI protocols, sliced at 4.4-mm intervals, processed for whole-mount histology, and the resulting histological sections (3-5 per specimen, 34 in total) were digitized. The correspondence between fiducial markers on histology and MR images yielded an initial registration, which was refined by a local optimization technique, yielding the least-squares best-fit affine transformation between corresponding fiducial points on histology and MR images. Accuracy was quantified as the postregistration 3D distance between landmarks (3-7 per section, 184 in total) on histology and MR images, and compared to a previous state-of-the-art registration method. RESULTS: The proposed method and previous method had mean (SD) target registration errors of 0.71 (0.38) mm and 1.21 (0.74) mm, respectively, requiring 3 and 11 hours of processing time, respectively. CONCLUSION: The proposed method registers digital histology to prostate MR images, yielding 70% reduced processing time and mean accuracy sufficient to achieve 85% overlap on histology and ex vivo MR images for a 0.2 cc spherical tumor.


Assuntos
Biópsia/instrumentação , Marcadores Fiduciais , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Reconhecimento Automatizado de Padrão/métodos , Próstata/patologia , Técnica de Subtração , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Biópsia/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...