Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208934

RESUMO

This paper deals with the effect of synthetic and natural flame retardants on flammability characteristics and chemical changes in thermally treated meranti wood (Shorea spp.). The basic chemical composition (extractives, lignin, holocellulose, cellulose, and hemicelluloses) was evaluated to clarify the relationships of temperature modifications (160 °C, 180 °C, and 210 °C) and incineration for 600 s. Weight loss, burning speed, the maximum burning rate, and the time to reach the maximum burning rate were evaluated. Relationships between flammable properties and chemical changes in thermally modified wood were evaluated with the Spearman correlation. The thermal modification did not confirm a positive contribution to the flammability and combustion properties of meranti wood. The effect of the synthetic retardant on all combustion properties was significantly higher compared to that of the natural retardant.

2.
Polymers (Basel) ; 13(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804876

RESUMO

Thermal modification is an environmentally friendly process in which technological properties of wood are modified using thermal energy without adding chemicals, the result of which is a value-added product. Wood samples of three tropical wood species (meranti, padauk, and merbau) were thermally treated according to the ThermoWood process at various temperatures (160, 180, 210 °C) and changes in isolated lignin were evaluated by nitrobenzene oxidation (NBO), Fourier-transform infrared spectroscopy (FTIR), and size exclusion chromatography (SEC). New data on the lignins of the investigated wood species were obtained, e.g., syringyl to guaiacyl ratio values (S/G) were 1.21, 1.70, and 3.09, and molecular weights were approx. 8600, 4300, and 8300 g·mol-1 for meranti, padauk, and merbau, respectively. Higher temperatures cause a decrease of methoxyls and an increase in C=O groups. Simultaneous degradation and condensation reactions in lignin occur during thermal treatment, the latter prevailing at higher temperatures.

3.
Materials (Basel) ; 10(3)2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28772684

RESUMO

This paper deals with the influence of selected methods (mechanical and pneumatic) as well as various factors (wood species, moisture content, veneer shape, punch diameter, laminating foil thickness, holding method, plasticizing) on 3D molding of veneers. 3D molding was evaluated on the basis of maximum deflection of birch and beech veneers. Cracks and warping edges were also evaluated in selected groups of mechanical molding. Mechanical methods tested veneers with various treatments (steaming, water and ammonia plasticizing and lamination). The pneumatic method was based on veneer shaping using air pressure. The results indicate that birch veneers are more suitable for 3D molding. The differences between the mechanical and pneumatic methods were not considerable. The most suitable method for mechanical 3D molding was the veneer lamination by polyethylene foils with thicknesses of 80 and 125 µm, inasmuch as these achieved better results than veneer plasticized by steam. The occurrence of cracks was more frequent in beech veneers, whereas, edge warping occurred at similar rates for both wood species and depends rather on holding method during 3D molding. Use of the ammonia solution is more suitable and there occurs no marked increase in moisture as happens when soaking in water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA