Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Precis Chem ; 1(1): 49-56, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37025975

RESUMO

Various methods have been developed to measure the strength of a Lewis acid. A major challenge for these measurements lies in the complexity that arises from variable solvent interactions and perturbations of Lewis acids as their reaction environment changes. Herein, we investigate the impact of solvent effects on Lewis acids for the first time as measured by the fluorescent Lewis adduct (FLA) method. The binding of a Lewis acid in various solvents reveals a measurable dichotomy between both polarity and donor ability of the solvent. While not strictly separable, we observe that the influence of solvent polarity on Lewis acid unit (LAU) values is distinctly opposite to the influence of donor ability. This dichotomy was confirmed by titration data, illustrating that solvation effects can be appropriately and precisely gauged by the FLA method.

2.
Chempluschem ; 88(7): e202300133, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37084062

RESUMO

P-Arylation of dithieno[3,2-b : 2',3'-d]phosphole toward cationic phenyl phospholium species using diaryliodonium reagents was explored. Multiple conditions were tested to optimize the reaction, including variation of solvent, temperature, stoichiometry, time, and aryliodonium species employed. Initial use of diphenyliodonium chloride led to an unexpected dithienophosphole Cu(I) chloride complex that was characterized crystallographically. Alternatively, the use of diphenyliodonium hexafluorophosphate in ethanol under microwave conditions led to the successful isolation of the P-arylated target. The phenyl dithienophospholium species exhibits blue luminescence with a quantum yield of 100 % in solution that is considerably red-shifted in the solid state. The photophysics and solid-state organization of the new species were compared with those of a related methyl congener, showing distinct differences that are assigned to the nature of the carbon-based substituent at the phosphorus center, which was also confirmed by DFT calculations, and the supramolecular organization in the solid state.

3.
Acc Chem Res ; 56(5): 536-547, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36791028

RESUMO

ConspectusRecent ground-breaking advances in synthetic chemistry have transformed main-group molecules from simple laboratory curiosities into powerful materials for a range of applications in all realms of life. Electron-accepting or -deficient materials, in particular, have been the focus of development since their generally limited availability and stability have been major hurdles in establishing new practical applications. In addition to the general requirements for the design of these materials, a deeper understanding of their inherent electronics and molecular interactions is a requirement for the successful expansion of their utility. Previously, the incorporation of electron-deficient main-group elements, such as boron, into a conjugated organic framework was considered to be an effective route toward the synthesis of high-performing electron-accepting materials. However, challenging conditions such as the need for bulky substituents for kinetic stabilization, air-free and moisture-sensitive synthesis, and restricted storage abilities have led to the investigation of other elements across the periodic table to be used in a similar vein. Lately, heavier main-group elements such as Si, Ge, P, As, Sb, Bi, S, Se, and Te have also proven to be advantageous for electron-accepting materials as they exhibit polarizable molecular orbitals that are easily accessible to electrons or nucleophiles. This has laid the foundation for materials chemistry research on a variety of applications, including optoelectronic devices such as OLEDs, organic photovoltaics, energy storage such as in batteries and capacitors, fluorescent sensors with both biological and physiological applications, organocatalysis and synthesis, and many more. Among the main-group-element-based materials, organophosphorus species are privileged as their frontier orbitals are easily altered by chemical modification or/and structural and geometrical manipulations at the phosphorus center itself, without the need for kinetic stabilization, or through electronic modification of the conjugated system. The five-membered phosphorus-based heterocycle, phosphole, is a particularly interesting motif in this context, and extensive studies on the corresponding materials have uncovered the rich fundamentals of the σ*-π* interaction that imparts intriguing accepting properties while sustaining morphological and physiological stability for utilization in real-life scenarios. Moreover, beyond the σ*-π* interaction in phospholes that is key to many of their acceptor properties as a material, the use of phosphorus also gives rise to easily accessible, low-lying antibonding orbitals. They pave the way for Lewis acid phosphorus species that, despite being considered to be electron-rich species in general, open up several possibilities for intriguing chemical reactivity through hypervalency. Herein, we representatively discuss some recent advancements through the various approaches that leverage the unique structures and electronics of organophosphorus species toward the design of materials with outstanding electronic, chemical, and structural properties and reactivities for the functional material world.

4.
Dalton Trans ; 50(19): 6667-6672, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33908542

RESUMO

Several new bifunctional salts, Li[B(DPN)2], Li[B(DPN)(ox)] and Li[P(DPN)3], have been prepared from the phosphorus(v)-containing chelating ligand 2,3-dihydroxynaphthalene-1,4-(tetraethyl)bis(phosphonate) (H2-DPN). The new lithium salts were characterized by a variety of spectroscopic techniques. Both H2-DPN and Li[B(DPN)2] have been structurally characterized by X-ray crystallographic methods. These salts are related to materials being examined for use in electrolyte solutions for lithium-ion battery (LIB) applications.

5.
Dalton Trans ; 50(6): 2243-2252, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33503083

RESUMO

A series of neutral pentacoordinate dithieno[3,2-b:2',3'-d]phosphole compounds were synthesized by [4 + 1] cycloaddition with o-quinones. Counter to the expected trigonal bipyramidal geometry, the luminescent hypervalent dithienophospholes exhibit square pyramidal geometry with inherently Lewis acidic phosphorus center that is stabilized via supramolecular π-stacking interactions in the solid state and in solution. Due to their Lewis-acid character, the compounds react with nucleophiles, suggesting their potential as mediator in organic transformations. The new species thus present an intriguing structural plaform for the design of neutral P(v) Lewis acids with useful reactivities.

6.
Chem Sci ; 11(38): 10483-10487, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34094306

RESUMO

Low molecular weight organic molecules that can accept multiple electrons at high reduction potentials are sought after as electrode materials for high-energy sustainable batteries. To date their synthesis has been difficult, and organic scaffolds for electron donors significantly outnumber electron acceptors. Herein, we report the synthesis and electronic properties of two highly electron-deficient phosphaviologen derivatives from a phosphorus-bridged 4,4'-bipyridine and characterize their electrochemical properties. Phosphaviologen sulfide (PVS) and P-methyl phosphaviologen (PVM) accept two and three electrons at high reduction potentials, respectively. PVM can reversibly accept three electrons between 3-3.6 V vs. Li/Li+ with an equivalent molecular weight of 102 g (mol-1 e-) (262 mA h g-1), making it a promising scaffold for sustainable organic electrode materials having high specific energy densities.

7.
J Am Chem Soc ; 141(30): 12055-12063, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31322901

RESUMO

Fluorescent molecules and materials that exhibit emission changes in response to analytes are of great interest across multiple disciplines. Herein, we investigate the response of NH-containing fluorophores carbazole and 2-phenylbenzimidazole (Ph-BIM) with two representative isolable singlet carbenes. Specifically, N-heterocyclic carbene 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) and cyclic (alkyl)(amino)carbene (2,6-diisopropylphenyl)-4,4-diethyl-2,2-dimethyl-pyrrolidin-5-ylidene (EtCAAC) were discovered to afford three different types of reaction products with carbazole and Ph-BIM. Depending on the reaction pair, hydrogen bonding (1), NH-insertion (2,3), or proton transfer (4) products can be isolated, each displaying variable photophysical responses. These products have been structurally authenticated by single crystal X-ray diffraction and NMR spectrometric methods. Studies of the solution state behavior of 1-4 reveals that these adducts are labile and can reversibly dissociate to free carbenes and fluorophores to varying extents. These equilibria produce concentration dependent solution state behavior as identified and quantified via UV-visible absorption, emission, 1H DOSY, and NMR spectroscopic measurements.

8.
Angew Chem Int Ed Engl ; 53(16): 4173-6, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24615890

RESUMO

The functionalized catecholate, tetraethyl (2,3-dihydroxy-1,4-phenylene)bis(phosphonate) (H2 -DPC), has been used to prepare a series of lithium salts Li[B(DPC)(oxalato)], Li[B(DPC)2], Li[B(DPC)F2], and Li[P(DPC)3]. The phosphoryl-rich character of these anions was designed to impart flame-retardant properties for their use as potential flame-retardant ions (FRIONs), additives, or replacements for other lithium salts for safer lithium-ion batteries. The new materials were fully characterized, and the single-crystal structures of Li[B(DPC)(oxalato)] and Li[P(DPC)3] have been determined. Thermogravimetric analysis of the four lithium salts show that they are thermally stable up to around 200 °C. Pyrolysis combustion flow calorimetry reveals that these salts produce high char yields upon combustion.

9.
Org Biomol Chem ; 11(33): 5425-34, 2013 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-23863862

RESUMO

A series of nine 1,4-distyrylfluorene derivatives (2) functionalized with substituents of variable electrondonating or -accepting capabilities was synthesised. The photophysical properties of the molecules were investigated, including UV/vis absorption, photoluminescence emission, and fluorescence quantum yields. Photophysical properties of chromophores 2 were found to exhibit significant solvatochromic effects, especially in the Stokes shift and photoluminescence maxima. The electrochemical properties of series 2 were also assessed by cyclic voltammetry and differential pulse voltammetry. Results of photophysical and electrochemical analyses were further supported by DFT calculations (B3LYP/6-31G*) and single crystal X-ray diffraction on select molecules. The contributions of intermolecular π-stacking and hydrogen bonding to crystal packing are discussed. A series of nine 1,4-distyrylphenylene derivatives (3) were also synthesised and similarly characterized for comparison to photophysical and solvatochromic effects observed in series 2. Properties of similarly-substituted molecules in series 2 and 3 were compared to one another in order to assess the influence of the 1,4-fluorenylene unit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...