Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Imaging ; 13: 128-39, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23545125

RESUMO

Computed tomography (CT) and magnetic resonance imaging (MRI) can play an important role in preoperative and post-treatment assessment of thyroid malignancy. The radiologist should be aware of the pathological behavior of thyroid carcinoma, and the characteristic imaging appearance of the primary tumor and metastases. This review describes the approach to imaging thyroid cancer on CT and MRI for four common scenarios: detection of the incidental thyroid nodule, evaluation of thyroid metastases, presurgical imaging for invasive disease, and evaluation for recurrence in the post-treatment neck.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias da Glândula Tireoide/diagnóstico , Tomografia Computadorizada por Raios X/métodos , Feminino , Humanos , Metástase Linfática , Masculino , Invasividade Neoplásica , Estadiamento de Neoplasias , Neoplasias da Glândula Tireoide/patologia
2.
AJR Am J Roentgenol ; 198(5): 1132-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22528904

RESUMO

OBJECTIVE: The purpose of this study was to assess the difference in absorbed organ dose and image quality for MDCT neck protocols using automatic tube current modulation alone compared with organ-based dose modulation and in-plane thyroid bismuth shielding. MATERIALS AND METHODS: An anthropomorphic female phantom with metal oxide semiconductor field effect transistor (MOSFET) detectors was scanned on a 64-MDCT scanner. The protocols included a reference neck CT protocol using automatic tube current modulation and three modified protocols: organ-based dose modulation, automatic tube current modulation with thyroid shield, and organ-based dose modulation with thyroid shield. Image noise was evaluated quantitatively with the SD of the attenuation value, and subjectively by two neuroradiologists. RESULTS: Organ-based dose modulation, automatic tube current modulation with thyroid shield, and organ-based dose modulation with thyroid shield protocols reduced the thyroid dose by 28%, 33%, and 45%, respectively, compared with the use of automatic tube current modulation alone (p ≤ 0.005). Organ-based dose modulation also reduced the radiation dose to the ocular lens (33-47%) compared with the use of automatic tube current modulation (p ≤ 0.04). There was no significant difference in measured noise and subjective image quality between the protocols. CONCLUSION: Both organ-based dose modulation and thyroid shields significantly reduce the thyroid organ dose without degradation of subjective image quality compared with automatic tube current modulation. Organ-based dose modulation has the additional benefit of dose reduction to the ocular lens.


Assuntos
Doses de Radiação , Proteção Radiológica/instrumentação , Glândula Tireoide/efeitos da radiação , Tomografia Computadorizada por Raios X , Carga Corporal (Radioterapia) , Feminino , Humanos , Pescoço , Imagens de Fantasmas , Radiometria , Software
3.
AJR Am J Roentgenol ; 198(3): 621-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22358002

RESUMO

OBJECTIVE: The purpose of this study was to assess the effect of peak kilovoltage on radiation dose and image quality in adult neck MDCT. MATERIALS AND METHODS: An anthropomorphic phantom with metal oxide semiconductor field effect transistor detectors was imaged with a 64-MDCT scanner. The reference CT protocol called for 120 kVp, and images obtained with that protocol were compared with CT images obtained with protocols entailing 80, 100, and 140 kVp. All imaging was performed with automatic tube current modulation. Organ dose and effective dose were determined for each protocol and compared with those obtained with the 120-kVp protocol. Image noise was evaluated objectively and subjectively for each protocol. RESULTS: The highest organ doses for all protocols were to the thyroid, ocular lens, skin, and mandible. The greatest reductions in organ dose were for the bone marrow of the cervical spine and mandible: 43% and 35% with the 100-kVp protocol and 63% and 53% with the 80-kVp protocol. Effective dose decreased as much as 9% with the 100-kVp protocol and 12% with the 80-kVp protocol. Use of the 140-kVp protocol was associated with an increase in organ dose as high as 64% for bone marrow in the cervical spine and a 19% increase in effective dose. Image noise increased with lower peak kilovoltage. The measured noise difference was greatest at 80 kVp, absolute increases were less than 2.5 HU. There was no difference in subjective image quality among protocols. CONCLUSION: Reducing the voltage from 120 to 80 kVp for neck CT can result in greater than 50% reduction in the absorbed organ dose to the bone marrow of the cervical spine and mandible without impairment in subjective image quality.


Assuntos
Pescoço/diagnóstico por imagem , Tomografia Computadorizada Espiral/métodos , Adulto , Humanos , Imagens de Fantasmas , Doses de Radiação , Proteção Radiológica , Interpretação de Imagem Radiográfica Assistida por Computador , Valores de Referência
4.
AJR Am J Roentgenol ; 197(5): W904-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22021540

RESUMO

OBJECTIVE: The purpose of this study was to identify an optimal cross-sectional neck diameter that correlates with image quality and radiation exposure in MDCT examinations of the neck performed with automatic tube current modulation. MATERIALS AND METHODS: Ninety-six adults underwent 64-MDCT of the neck with automatic tube current modulation at the same noise setting. On frontal and lateral scout images, maximal body diameters were measured in the transverse and anteroposterior planes at two levels: just below the mandible (upper neck) and at the lung apex (lower neck). Neck diameters were correlated with image quality on a subjective 4-point scale and with radiation exposure (volume CT dose index). RESULTS: As continuous variables, both anteroposterior and transverse diameters in the lower neck were associated with image quality (p ≤ 0.0012). Diameters in the upper neck were not associated with image quality. When diameters in the lower neck were categorized into small, medium, and large, image quality grades were higher for smaller patients (p < 0.001). Images of 81% of small patients (lower neck transverse diameter < 40 cm) had a high image quality grade, compared with images of 7-20% of large patients (diameter > 48 cm). Transverse diameter in the lower neck correlated best with radiation dose measured as volume CT dose index (r = 0.78). When transverse diameter in the lower neck was used to categorize patients' size, the mean volume CT dose index for small patients was 34.1 mSv and that for large patients was 63.5 mSv. CONCLUSION: Lower neck transverse diameter on the CT scout image best correlates with image quality and radiation exposure for neck MDCT examinations performed with automatic tube current modulation. Images of patients with a lower neck transverse diameter less than 40 cm are of higher quality than those of larger patients. Individualized dose reduction techniques therefore may be appropriate for smaller patients.


Assuntos
Pescoço/diagnóstico por imagem , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Meios de Contraste , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Interpretação de Imagem Radiográfica Assistida por Computador , Estudos Retrospectivos , Estatísticas não Paramétricas
5.
AJR Am J Roentgenol ; 197(4): 778-82, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21940563

RESUMO

OBJECTIVE: The purpose of this article is to compare the radiation dose of conventional fluoroscopy-guided lumbar epidural steroid injections (ESIs) and CT fluoroscopy (CTF)-guided lumbar ESI using both clinical data and anthropomorphic phantoms. MATERIALS AND METHODS: We performed a retrospective review of dose parameters for 14 conventional fluoroscopy ESI procedures performed by one proceduralist and 42 CTF-guided ESIs performed by three proceduralists (14 each). By use of imaging techniques similar to those for our clinical cohorts, a commercially available anthropomorphic male phantom with metal oxide semiconductor field effect transistor detectors was scanned to obtain absorbed organ doses for conventional fluoroscopy-guided and CTF-guided ESIs. Effective dose (ED) was calculated from measured organ doses. RESULTS: The mean conventional fluoroscopy time for ESI was 37 seconds, and the mean procedural CTF time was 4.7 seconds. Calculated ED for conventional fluoroscopy was 0.85 mSv compared with 0.45 mSv for CTF. The greatest contribution to the radiation dose from CTF-guided ESI came from the planning lumbar spine CT scan, which had an ED of 2.90 mSv when z-axis ranged from L2 to S1. This resulted in a total ED for CTF-guided ESI (lumbar spine CT scan plus CTF) of 3.35 mSv. CONCLUSION: The ED for the CTF-guided ESI was almost half that of conventional fluoroscopy because of the shorter fluoroscopy time. However, the overall radiation dose for CTF-guided ESIs can be up to four times higher when a full diagnostic lumbar CT scan is performed as part of the procedure. Radiation dose reduction for CTF-guided ESI is best achieved by minimizing the dose from the preliminary planning lumbar spine CT scan.


Assuntos
Fluoroscopia/métodos , Injeções Epidurais , Injeções Espinhais , Dor Lombar/tratamento farmacológico , Doses de Radiação , Radiografia Intervencionista/métodos , Esteroides/administração & dosagem , Tomografia Computadorizada por Raios X/métodos , Idoso , Feminino , Humanos , Vértebras Lombares , Masculino , Imagens de Fantasmas , Estudos Retrospectivos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...