Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38535643

RESUMO

Addressing periprosthetic infections, which present significant healing challenges that often require revision surgeries, necessitates the development of novel antibacterial materials and implants. Current research focuses on creating materials that hinder bacterial adhesion, colonization, and proliferation in surrounding tissues. Boron (B)-containing compounds are known for their antibacterial properties and potential in bone metabolism for regenerative medicine. In this study, we synthesized B-containing tricalcium phosphate (0.3B-TCP) with 1.1 wt.% B content via precipitation from aqueous solutions and sintering at 1100 °C. X-ray diffraction confirmed the ceramic's primary crystalline phase as ß-TCP, with B evenly distributed according to energy-dispersive spectroscopy data. Electron paramagnetic resonance (EPR) data verified stable paramagnetic borate anions, indicating successful BO33- substitution for phosphate groups. The microstructural properties of 0.3B-TCP ceramic were assessed before and after soaking in a saline solution. Its bending strength was approximately 30 MPa, and its porosity was about 33%. 0.3B-TCP ceramic demonstrated significant antimicrobial efficacy against various bacterial strains and a fungus. Cytotoxicity evaluation using equine adipose tissue-derived mesenchymal stem cells and osteogenic differentiation assessment were conducted. The combination of antibacterial efficacy and good cytocompatibility suggests 0.3B-TCP ceramic as a promising bone substitute material.

2.
Biomedicines ; 12(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38397865

RESUMO

Creating bioactive materials for bone tissue regeneration and augmentation remains a pertinent challenge. One of the most promising and rapidly advancing approaches involves the use of low-temperature ceramics that closely mimic the natural composition of the extracellular matrix of native bone tissue, such as Hydroxyapatite (HAp) and its phase precursors (Dicalcium Phosphate Dihydrate-DCPD, Octacalcium Phosphate-OCP, etc.). However, despite significant scientific interest, the current knowledge and understanding remain limited regarding the impact of these ceramics not only on reparative histogenesis processes but also on the immunostimulation and initiation of local aseptic inflammation leading to material rejection. Using the stable cell models of monocyte-like (THP-1ATRA) and macrophage-like (THP-1PMA) cells under the conditions of LPS-induced model inflammation in vitro, the influence of DCPD, OCP, and HAp on cell viability, ROS and intracellular NO production, phagocytosis, and the secretion of pro-inflammatory cytokines was assessed. The results demonstrate that all investigated ceramic particles exhibit biological activity toward human macrophage and monocyte cells in vitro, potentially providing conditions necessary for bone tissue restoration/regeneration in the peri-implant environment in vivo. Among the studied ceramics, DCPD appears to be the most preferable for implantation in patients with latent inflammation or unpredictable immune status, as this ceramic had the most favorable overall impact on the investigated cellular models.

3.
Heliyon ; 10(4): e25291, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384581

RESUMO

Hydroxyapatite (HA) remains one of the most popular materials for various biomedical applications and its fields of application have been expanding. Lithium (Li+) is a promising candidate for modifying the biological behavior of HA. Li+ is present in trace amounts in the human body as an alkaline and bioelectric material. At the same time, the introduction of Li+ into the HA structure required charge balance compensation due to the difference in oxidation degree, and the scheme of this compensation is still an open question. In the present work, the results of the theoretical and experimental study of the Li+-doped HA synthesis are presented. According to X-ray diffraction data, Fourier transform infrared spectroscopy as well as the combination of electron paramagnetic resonance methods, the introduction of Li+ in the amount up to 0.05 mol% resulted in the preservation of the HA structure. Density functional theory calculations show that Li+ preferentially incorporates into the Ca (1) position with a small geometry perturbation. The less probable positioning in the Ca (2) position leads to a drastic perturbation of the anion channel.

4.
Nanomaterials (Basel) ; 13(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36770379

RESUMO

Mesoporous hydroxyapatite (HA) materials demonstrate advantages as catalysts and as support systems for catalysis, as adsorbent materials for removing contamination from soil and water, and as nanocarriers of functional agents for bone-related therapies. The present research demonstrates the possibility of the enlargement of the Brunauer-Emmett-Teller specific surface area (SSA), pore volume, and average pore diameter via changing the synthesis medium and ripening the material in the mother solution after the precipitation processes have been completed. HA powders were investigated via chemical analysis, X-ray diffraction analysis, Fourier-transform IR spectroscopy, transmission electron microscopy (TEM), and scanning (SEM) electron microscopy. Their SSA, pore volume, and pore-size distributions were determined via low-temperature nitrogen adsorption measurements, the zeta potential was established, and electron paramagnetic resonance (EPR) spectroscopy was performed. When the materials were synthesized in water-ethanol and water-acetone media, the SSA and total pore volume were 52.1 m2g-1 and 116.4 m2g-1, and 0.231 and 0.286 cm3g-1, respectively. After ripening for 21 days, the particle morphology changed, the length/width aspect ratio decreased, and looser and smaller powder agglomerates were obtained. These changes in their characteristics led to an increase in SSA for the water and water-ethanol samples, while pore volume demonstrated a multiplied increase for all samples, reaching 0.593 cm3g-1 for the water-acetone sample.

5.
Materials (Basel) ; 15(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36556852

RESUMO

Hydroxyapatite (HA) with a stoichiometry composition of Ca10(PO4)6(OH)2 is widely applied for various biomedical issues, first of all for bone defect substitution, as a catalyst, and as an adsorbent for soil and water purification. The incorporation of foreign ions changes the acid-base relation, microstructure, porosity, and other properties of the HA materials. Here, we report the results of calculations of the density functional theory and analyze the possibility of two foreign ions, CO32- and Mg2+, to be co-localized in the HA structure. The Na+ was taken into account for charge balance preservation. The analysis revealed the favorable incorporation of CO32- and Mg2+ as a complex when they interact with each other. The energy gain over the sole ion incorporation was pronounced when CO32- occupied the A position and Mg2+ was in the Ca(2) position and amounted to -0.31 eV. In the most energy-favorable complex, the distance between Mg2+ and the O atom of carbonate ion decreased compared to Mg…O distances to the surrounding phosphate or hydroxide ions, and amounted to 1.98 Å. The theoretical calculations agree well with the experimental data reported earlier. Understating the structure-properties relationship in HA materials varying in terms of composition, stoichiometry, and morphology paves the way to rational designs of efficient bio-based catalytic systems.

6.
Nanomaterials (Basel) ; 12(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35564312

RESUMO

Polymer self-healing films containing fragments of pillar[5]arene were obtained for the first time using thiol/disulfide redox cross-linking. These films were characterized by thermogravimetric analysis and differential scanning calorimetry, FTIR spectroscopy, and electron microscopy. The films demonstrated the ability to self-heal through the action of atmospheric oxygen. Using UV-vis, 2D 1H-1H NOESY, and DOSY NMR spectroscopy, the pillar[5]arene was shown to form complexes with the antimicrobial drug moxifloxacin in a 2:1 composition (logK11 = 2.14 and logK12 = 6.20). Films containing moxifloxacin effectively reduced Staphylococcus aureus and Klebsiella pneumoniae biofilms formation on adhesive surfaces.

7.
ACS Omega ; 6(39): 25338-25349, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34632192

RESUMO

Substituted calcium phosphates (CaPs) are vital materials for the treatment of bone diseases and repairing and replacement of defects in human hard tissues. In this paper, we present some applications of the rarely used pulsed electron paramagnetic resonance (EPR) and hyperfine interaction spectroscopy approaches [namely, electron spin-echo envelope modulation (ESEEM) and electron-electron double-resonance detected nuclear magnetic resonance (EDNMR)] to investigate synthetic CaPs (hydroxyapatite, tricalcium, and octacalcium phosphate) doped with various cations (Li+, Na+, Mn2+, Cu2+, Fe3+, and Ba2+). These resonance techniques provide reliable tools to obtain unique information about the presence and localization of impurity centers and values of hyperfine and quadrupole tensors. We show that revealed in CaPs by EPR techniques, radiation-induced stable nitrogen-containing species and carbonate radicals can serve as sensitive paramagnetic probes to follow CaPs' structural changes caused by cation doping. The most pulsed EPR, ESEEM, and EDNMR spectra can be detected at room temperature, reducing the costs of the measurements and facilitating the usage of pulsed EPR techniques for CaP characterization.

8.
Nanomaterials (Basel) ; 11(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809993

RESUMO

Mesoporous hydroxyapatite (HA) and iron(III)-doped HA (Fe-HA) are attractive materials for biomedical, catalytic, and environmental applications. In the present study, the nanopowders of HA and Fe-HA with a specific surface area up to 194.5 m2/g were synthesized by a simple precipitation route using iron oxalate as a source of Fe3+ cations. The influence of Fe3+ amount on the phase composition, powders morphology, Brunauer-Emmett-Teller (BET) specific surface area (S), and pore size distribution were investigated, as well as electron paramagnetic resonance and Mössbauer spectroscopy analysis were performed. According to obtained data, the Fe3+ ions were incorporated in the HA lattice, and also amorphous Fe oxides were formed contributed to the gradual increase in the S and pore volume of the powders. The Density Functional Theory calculations supported these findings and revealed Fe3+ inclusion in the crystalline region with the hybridization among Fe-3d and O-2p orbitals and a partly covalent bond formation, whilst the inclusion of Fe oxides assumed crystallinity damage and rather occurred in amorphous regions of HA nanomaterial. In vitro tests based on the MG-63 cell line demonstrated that the introduction of Fe3+ does not cause cytotoxicity and led to the enhanced cytocompatibility of HA.

9.
Langmuir ; 37(9): 2942-2953, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33630597

RESUMO

Decasubstituted pillar[5]arenes containing amidopyridine fragments have been synthesized for the first time. As was shown by UV-vis spectroscopy, the pillar[5]arenes with p-amidopyridine fragments form supramolecular associates with Cu(II) and Pd(II) cations in methanol in a 2:1 ratio. Using a sol-gel approach these associates are transformed into metallo-supramolecular coordination polymers (supramolecular gels) which were characterized as amorphous powders by scanning electron microscopy (SEM) and dynamic light scattering (DLS). The powders are able to selectively adsorb up to 46% of nitrophenols from water and were incorporated into an electrochemical sensor to selectively recognize them in aqueous acidic solution.

10.
Ann Vasc Surg ; 72: 340-349, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32927044

RESUMO

BACKGROUND: The study aim is to determine the criteria for carotid atherosclerotic plaque instability with the use of an advanced ultrasound technology, immunohistochemical analysis, and electron paramagnetic resonance (EPR) and assess their correlations with histologic results. METHODS: A total of 92 patients were included in the study and were examined by ultrasound duplex scanning and ultrasound elastography. Plaques harvested during carotid endarterectomy were obtained for histologic analysis, immunofluorescent assay, and EPR spectroscopic measurements. RESULTS: Multivariate logistic regression analysis showed that plaques with an area >90 mm2 (odds ratio [OR], 4.05; 95% confidence interval [CI], 1.32-13.2; P = 0.006), plaque volume index > 0.6 cm3 (OR, 2.72; 95% CI, 1.05-9.58; P = 0.04), and juxtaluminal black area ≥8 mm2 (OR, 2.82; 95% CI, 1.22-6. 23; P = 0.02) were statistically significant independent predictors of histologically verified unstable plaques. Unstable plaques occurred in 94% of the patients with these indicators. Significant increases in the number of CD68+ and CD36+ cells (inflammatory markers) and CD31+ cells (neovasculogenesis markers) were revealed in unstable plaques by the immunohistochemical assay. EPR data analysis showed that divalent manganese could serve as a marker of plaque instability. CONCLUSIONS: Additional ultrasound criteria, verified by histologic studies, significantly increased the information content for identifying patients with unstable plaques, which can be of great importance in stratifying the risk of ischemic stroke, especially in asymptomatic patients. The degree of calcification is not a mandatory criterion for plaque stabilization.


Assuntos
Doenças das Artérias Carótidas/diagnóstico por imagem , Técnicas de Imagem por Elasticidade , Placa Aterosclerótica , Ultrassonografia Doppler Dupla , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças das Artérias Carótidas/cirurgia , Espectroscopia de Ressonância de Spin Eletrônica , Endarterectomia das Carótidas , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Ruptura Espontânea
11.
Materials (Basel) ; 13(19)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33022953

RESUMO

Bioactive manganese (Mn)-doped ceramic coatings for intraosseous titanium (Ti) implants are developed. Arc plasma deposition procedure is used for coatings preparation. X-ray Diffraction, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy, and Electron Paramagnetic Resonance (EPR) methods are applied for coatings characterization. The coatings are homogeneous, composed of the main phase α-tricalcium phosphate (α-TCP) (about 67%) and the minor phase hydroxyapatite (about 33%), and the Mn content is 2.3 wt%. EPR spectroscopy demonstrates that the Mn ions are incorporated in the TCP structure and are present in the coating in Mn2+ and Mn3+ oxidation states, being aggregated in clusters. The wetting contact angle of the deposited coatings is suitable for cells' adhesion and proliferation. In vitro soaking in physiological solution for 90 days leads to a drastic change in phase composition; the transformation into calcium carbonate and octacalcium phosphate takes place, and no more Mn is present. The absence of antibacterial activity against Escherichia coli, Enterococcus faecalis, and Pseudomonas aeruginosa bacteria strains is observed. A study of the metabolic activity of mouse fibroblasts of the NCTC L929 cell line on the coatings using the MTT (dye compound 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test demonstrates that there is no toxic effect on the cell culture. Moreover, the coating material supports the adhesion and proliferation of the cells. A good adhesion, spreading, and proliferative activity of the human tooth postnatal dental pulp stem cells (DPSC) is demonstrated. The developed coatings are promising for implant application in orthopedics and dentistry.

12.
Cancer Microenviron ; 9(1): 27-32, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26905073

RESUMO

High levels of reactive oxygen (ROS) and nitrogen (RNS) species can lead to the destruction of extracellular matrix facilitating tumor progression. ROS can activate matrix metalloproteinases (MMP), damage DNA and RNA. Therefore, the levels of MMP, ROS and RNS can serve as additional prognostic markers and for the estimation of the effectiveness of tumor therapy. Concerning gastric cancer, the prognostic role of MMP, its connection with the cancer staging remains controversial and correlations between the activity of MMP with the ROS and RNS levels are insufficiently confirmed. Superoxide generation rates, nitric oxide (NO) levels, concentrations of active forms of matrix metalloproteinases MMP-2 and MMP-9 in tumor and adjacent tissues of patients with stomach cancer at different disease stages were measured by electron spin resonance (ESR) including spin-trapping and polyacrylamide gel zymography. It is shown that the activity of MMP-2 and MMP-9 in tumor tissue correlate with the superoxide radicals generation rate and NO levels (r = 0.48÷0.67, p < 0.05). The activity of MMP-2 and MMP-9 in tumor tissues and superoxide radical generation rates correlate positively with the stage of regional dissemination (r = 0.45 and 0.37, correspondingly, p < 0.05), but MMP-2 and MMP-9 activity inversely depends on distant metastatic degree of stomach cancer (r = 0.58; p < 0.05). Additionally, the feasibility of ESR to locally determine oxidative stress is demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...