Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thorac Imaging ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37732694

RESUMO

PURPOSE: Intravenous contrast poses challenges to computed tomography (CT) muscle density analysis. We developed and tested corrections for contrast-enhanced CT muscle density to improve muscle analysis and the utility of CT scans for the assessment of myosteatosis. MATERIALS AND METHODS: Using retrospective images from 240 adults who received routine abdominal CT imaging from March to November 2020 with weight-based iodine contrast, we obtained paraspinal muscle density measurements from noncontrast (NC), arterial, and venous-phase images. We used a calibration sample to develop 9 different mean and regression-based corrections for the effect of contrast. We applied the corrections in a validation sample and conducted equivalence testing. RESULTS: We evaluated 140 patients (mean age 52.0 y [SD: 18.3]; 60% female) in the calibration sample and 100 patients (mean age 54.8 y [SD: 18.9]; 60% female) in the validation sample. Contrast-enhanced muscle density was higher than NC by 8.6 HU (SD: 6.2) for the arterial phase (female, 10.4 HU [SD: 5.7]; male, 6.0 HU [SD:6.0]) and by 6.4 HU [SD:8.1] for the venous phase (female, 8.0 HU [SD: 8.6]; male, 4.0 HU [SD: 6.6]). Corrected contrast-enhanced and NC muscle density was equivalent within 3 HU for all correctionns. The -7.5 HU correction, independent of sex and phase, performed well for arterial (95% CI: -0.18, 1.80 HU) and venous-phase data (95% CI: -0.88, 1.41 HU). CONCLUSIONS: Our validated correction factor of -7.5 HU renders contrast-enhanced muscle density statistically similar to NC density and is a feasible rule-of-thumb for clinicians to implement.

2.
J Cachexia Sarcopenia Muscle ; 13(6): 2807-2819, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36065509

RESUMO

Computed tomography (CT) is a valuable assessment method for muscle pathologies such as sarcopenia, cachexia, and myosteatosis. However, several key underappreciated scan imaging parameters need consideration for both research and clinical use, specifically CT kilovoltage and the use of contrast material. We conducted a scoping review to assess these effects on CT muscle measures. We reviewed articles from PubMed, Scopus, and Web of Science from 1970 to 2020 on the effect of intravenous contrast material and variation in CT kilovoltage on muscle mass and density. We identified 971 articles on contrast and 277 articles on kilovoltage. The number of articles that met inclusion criteria for contrast and kilovoltage was 11 and 7, respectively. Ten studies evaluated the effect of contrast on muscle density of which nine found that contrast significantly increases CT muscle density (arterial phase 6-23% increase, venous phase 19-57% increase, and delayed phase 23-43% increase). Seven out of 10 studies evaluating the effect of contrast on muscle area found significant increases in area due to contrast (≤2.58%). Six studies evaluating kilovoltage on muscle density found that lower kilovoltage resulted in a higher muscle density (14-40% increase). One study reported a significant decrease in muscle area when reducing kilovoltage (2.9%). The use of contrast and kilovoltage variations can have dramatic effects on skeletal muscle analysis and should be considered and reported in CT muscle analysis research. These significant factors in CT skeletal muscle analysis can alter clinical and research outcomes and are therefore a barrier to clinical application unless better appreciated.


Assuntos
Meios de Contraste , Sarcopenia , Humanos , Sarcopenia/diagnóstico por imagem , Sarcopenia/patologia , Tomografia Computadorizada por Raios X/métodos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Caquexia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...