Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Appl Clin Med Phys ; 21(6): 15-25, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32250042

RESUMO

Prostate cancer external beam radiation therapy can result in toxicity due to organ at risk (OAR) dose, potentially impairing quality of life. A polyethylene glycol-based spacer, SpaceOAR© hydrogel (SOH), implanted between prostate gland and rectum may significantly reduce dose received by the rectum and hence risk of rectal toxicity. SOH implant is not equally effective in all patients. Determining patients in which the implant will offer most benefit, in terms of rectal dose reduction, allows for effective management of SOH resources. Several factors have been shown to be correlated with reduction in rectal dose including distance between rectum and planning treatment volume (PTV), volume of rectum in the PTV, and change in rectum volume pre- to post-SOH. Several of these factors along with other pre-SOH CT metrics were able to predict reduction in rectal dose associated with SOH implant. Rectal V55Gy metric, was selected as the dose level of interest in the context of 60 Gy in 20 fraction treatment plans. Models were produced to predict change in RV55Gy and pre-SOH hydrogel RV55Gy. These models offered R-squared between 0.81 and 0.88 with statistical significance in each model. Applying an ω 1  = 3% lower limit of pre-SOH RV55 Gy and an ω 2  = 3.5% lower limit on change in RV55 Gy, retained 60% of patients experiencing the largest rectal dose reduction from the hydrogel. This may offer a clinically useful tool in deciding which patients should receive SOH implant given limited resources. Predictive models, nomograms, and a workflow diagram were produced for clinical management of SOH implant.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato , Neoplasias da Próstata , Planejamento da Radioterapia Assistida por Computador , Reto , Redução da Medicação , Humanos , Hidrogéis , Masculino , Órgãos em Risco , Neoplasias da Próstata/radioterapia , Qualidade de Vida , Dosagem Radioterapêutica , Reto/diagnóstico por imagem
2.
J Appl Clin Med Phys ; 20(4): 91-98, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30889318

RESUMO

External beam radiation therapy for prostate cancer can result in urinary, sexual, and rectal side effects, often impairing quality of life. A polyethylene glycol-based product, SpaceOAR© hydrogel (SOH), implanted into the connective tissue between the prostate gland and rectum can significantly reduce the dose received by the rectum and hence risk of rectal toxicity. The optimal way to manage the hydrogel and rectal structures for plan optimization is therefore of interest. In 13 patients, computerized tomography (CT) scans were taken pre- and post-SpaceOAR© implant. A prescription of 60 Gy in 20 fractions was planned on both scans. Six treatment plans were produced per anonymized dataset using either a structure of rectum plus the hydrogel, termed composite rectum wall (CRW), or rectal wall (RW) as an inverse optimization structure and intensity modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT) as a treatment technique. Dose-volume histogram metrics were compared between plans to determine which optimization structure and treatment technique offered the maximum rectal dose sparing. RW structures offered a statistically significant decrease in rectal dose over CRW structures, whereas the treatment technique (IMRT vs VMAT) did not significantly affect the rectal dose. There was improvement seen in bladder and penile bulb dose when VMAT was used as a treatment technique. Overall, treatment plans using the RW optimization structure offered the lowest rectal dose while VMAT treatment technique offered the lowest bladder and penile bulb dose.


Assuntos
Hidrogéis/química , Tratamentos com Preservação do Órgão/métodos , Órgãos em Risco/efeitos da radiação , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Reto/efeitos da radiação , Bexiga Urinária/efeitos da radiação , Humanos , Masculino , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos
3.
Phys Med Biol ; 61(24): 8779-8793, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-27897141

RESUMO

To accurately simulate therapeutic electron beams using Monte Carlo methods, backscatter from jaws into the monitor chamber must be accounted for via the backscatter factor, S b. Measured and simulated values of S b for the TrueBeam are investigated. Two approaches for measuring S b are presented. Both require service mode operation with the dose and pulse forming networking servos turned off in order to assess changes in dose rate with field size. The first approach samples an instantaneous dose rate, while the second approach times the delivery of a fixed number of monitor units to assess dose rate. Dose rates were measured for 6, 12 and 20 MeV electrons for jaw- or MLC-shaped apertures between [Formula: see text] and [Formula: see text] cm2. The measurement techniques resulted in values of S b that agreed within 0.21% for square and asymmetric fields collimated by the jaws. Measured values of S b were used to calculate the forward dose component in a virtual monitor chamber using BEAMnrc. Based on this forward component, simulated values of S b were calculated and compared to measurement and Varian's VirtuaLinac simulations. BEAMnrc results for jaw-shaped fields agreed with measurements and with VirtuaLinac simulations within 0.2%. For MLC-shaped fields, the respective measurement techniques differed by as much as 0.41% and BEAMnrc results differed with measurement by as much as 0.4%, however, all measured and simulated values agreed within experimental uncertainty. Measurement sensitivity was not sufficient to capture the small backscatter effect due to the MLC, and Monte Carlo predicted backscatter from the MLC to be no more than 0.3%. Backscatter from the jaws changed the electron dose rate by up to 2.6%. This reinforces the importance of including a backscatter factor in simulations of electron fields shaped with secondary collimating jaws, but presents the option of ignoring it when jaws are retracted and collimation is done with the MLC.


Assuntos
Elétrons , Método de Monte Carlo , Aceleradores de Partículas , Radiometria/instrumentação , Espalhamento de Radiação , Fótons , Incerteza
4.
Med Phys ; 43(6): 2894-2903, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27277038

RESUMO

PURPOSE: This work evaluates Varian's electron phase-space sources for Monte Carlo simulation of the TrueBeam for modulated electron radiation therapy (MERT) and combined, modulated photon and electron radiation therapy (MPERT) where fields are shaped by the photon multileaf collimator (MLC) and delivered at 70 cm SSD. METHODS: Monte Carlo simulations performed with EGSnrc-based BEAMnrc/DOSXYZnrc and penelope-based PRIMO are compared against diode measurements for 5 × 5, 10 × 10, and 20 × 20 cm(2) MLC-shaped fields delivered with 6, 12, and 20 MeV electrons at 70 cm SSD (jaws set to 40 × 40 cm(2)). Depth dose curves and profiles are examined. In addition, EGSnrc-based simulations of relative output as a function of MLC-field size and jaw-position are compared against ion chamber measurements for MLC-shaped fields between 3 × 3 and 25 × 25 cm(2) and jaw positions that range from the MLC-field size to 40 × 40 cm(2). RESULTS: Percent depth dose curves generated by BEAMnrc/DOSXYZnrc and PRIMO agree with measurement within 2%, 2 mm except for PRIMO's 12 MeV, 20 × 20 cm(2) field where 90% of dose points agree within 2%, 2 mm. Without the distance to agreement, differences between measurement and simulation are as large as 7.3%. Characterization of simulated dose parameters such as FWHM, penumbra width and depths of 90%, 80%, 50%, and 20% dose agree within 2 mm of measurement for all fields except for the FWHM of the 6 MeV, 20 × 20 cm(2) field which falls within 2 mm distance to agreement. Differences between simulation and measurement exist in the profile shoulders and penumbra tails, in particular for 10 × 10 and 20 × 20 cm(2) fields of 20 MeV electrons, where both sets of simulated data fall short of measurement by as much as 3.5%. BEAMnrc/DOSXYZnrc simulated outputs agree with measurement within 2.3% except for 6 MeV MLC-shaped fields. Discrepancies here are as great as 5.5%. CONCLUSIONS: TrueBeam electron phase-spaces available from Varian have been implemented in two distinct Monte Carlo simulation packages to produce dose distributions and outputs that largely reflect measurement. Differences exist in the profile shoulders and penumbra tails for the 20 MeV phase-space off-axis and in the outputs for the 6 MeV phase-space.

5.
J Appl Clin Med Phys ; 16(4): 193­201, 2015 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-26219015

RESUMO

Dosimetric comparisons of radiation fields produced by Varian's newest linear accelerator, the TrueBeam, with those produced by older Varian accelerators are of interest from both practical and research standpoints. While photon fields have been compared in the literature, similar comparisons of electron fields have not yet been reported. In this work, electron fields produced by the TrueBeam are compared with those produced by Varian's Clinac 21EX accelerator. Diode measurements were taken of fields shaped with electron applicators and delivered at 100 cm SSD, as well as those shaped with photon MLCs without applicators and delivered at 70 cm SSD for field sizes ranging from 5 × 5 to 25 × 25 cm² at energies between 6 and 20 MeV. Additionally, EBT2 and EBT3 radio-chromic film measurements were taken of an MLC-shaped aperture with closed leaf pairs delivered at 70 cm SSD using 6 and 20 MeV electrons. The 6 MeV fields produced by the TrueBeam and Clinac 21EX were found to be almost indistinguishable. At higher energies, TrueBeam fields shaped by electron applicators were generally flatter and had less photon contamination compared to the Clinac 21EX. Differences in PDDs and profiles fell within 3% and 3 mm for the majority of measurements. The most notable differences for open fields occurred in the profile shoulders for the largest applicator field sizes. In these cases, the TrueBeam and Clinac 21EX data differed by as much as 8%. Our data indicate that an accurate electron beam model of the Clinac 21EX could be used as a starting point to simulate electron fields that are dosimetrically equivalent to those produced by the TrueBeam. Given that the Clinac 21EX shares head geometry with Varian's iX, Trilogy, and Novalis TX accelerators, our findings should also be applicable to these machines.


Assuntos
Elétrons , Aceleradores de Partículas/instrumentação , Fótons , Radiometria/instrumentação , Humanos , Método de Monte Carlo
6.
J Appl Clin Med Phys ; 8(1): 33-46, 2006 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-17592451

RESUMO

Our study compares the performance of the analytical anisotropic algorithm (AAA), a new superposition-convolution algorithm recently implemented in the Eclipse (Varian Medical Systems, Palo Alto, CA) Integrated Treatment Planning System (TPS), to that of the pencil beam convolution (PBC) algorithm in an extreme (C-shaped, horizontal and vertical boundaries) water-lung interface phantom. Monte Carlo (MC) calculated dose distributions for a variety of clinical beam configurations at nominal energies of 6-MV and 18-MV are used as benchmarks in the comparison. Dose profiles extracted at three depths (4, 10, and 16 cm), two-dimensional (2D) maps of the dose differences, and dose difference statistics are used to quantify the accuracy of both photon-dose calculation algorithms. Results show that the AAA is considerably more accurate than the PBC, with the standard deviation of the dose differences within a region encompassing the lung block reduced by a factor of 2 and more. Confidence limits with the AAA were 4% or less for all beam configurations investigated; with the PBC, confidence limits ranged from 3.5% to 11.2%. Finally, AAA calculations for the small 4 x 4 18-MV beam, which is poorly modeled by PBC (dose differences as high as 16.1%), provided the same accuracy as the PBC model of the 6-MV beams commonly acceptable in clinical situations.


Assuntos
Neoplasias Pulmonares/radioterapia , Pulmão/anatomia & histologia , Planejamento da Radioterapia Assistida por Computador/métodos , Água , Algoritmos , Anisotropia , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Fótons , Radioterapia/efeitos adversos
7.
Med Phys ; 32(7): 2211-21, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16121575

RESUMO

The use of phase sequence image (PSI) sets to reveal the total volume occupied by a mobile target is presented. Isocontrast composite clinical target volumes (CCTVs) may be constructed from PSI sets in order to reveal the total volume occupied by a mobile target during the course of its travel. The ability of the CCTV technique to properly account for target motion is demonstrated by comparison to contours of the true total volume occupied (TVO) for a number of experimental phantom geometries. Finally, using real patient data, the clinical utility of the CCTV technique to properly account for internal tumor motion while minimizing the volume of healthy lung tissue irradiated is assessed by comparison to the standard approach of applying safety margins. Results of the phantom study reveal that CCTV cross sections constructed at the 20% isocontrast level yield good agreement with the total cross sections (TXO) of mobile targets. These CCTVs conform well to the TVOs of the moving targets examined whereby the addition of small uniform margins ensures complete circumscription of the TVO with the inclusion of minimal amounts of surrounding external volumes. The CCTV technique is seen to be clearly superior to the common practice of the addition of safety margins to individual CTV contours in order to account for internal target motion. Margins required with the CCTV technique are eight to ten times smaller than those required with individual CTVs.


Assuntos
Algoritmos , Artefatos , Imageamento Tridimensional/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Movimento , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Técnica de Subtração , Gravação em Vídeo/métodos , Humanos , Armazenamento e Recuperação da Informação/métodos , Neoplasias Pulmonares/patologia , Invasividade Neoplásica , Imagens de Fantasmas , Intensificação de Imagem Radiográfica/métodos , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos
8.
Med Phys ; 32(7Part1): 2211-2221, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28493582

RESUMO

The use of phase sequence image (PSI) sets to reveal the total volume occupied by a mobile target is presented. Isocontrast composite clinical target volumes (CCTVs) may be constructed from PSI sets in order to reveal the total volume occupied by a mobile target during the course of its travel. The ability of the CCTV technique to properly account for target motion is demonstrated by comparison to contours of the true total volume occupied (TVO) for a number of experimental phantom geometries. Finally, using real patient data, the clinical utility of the CCTV technique to properly account for internal tumor motion while minimizing the volume of healthy lung tissue irradiated is assessed by comparison to the standard approach of applying safety margins. Results of the phantom study reveal that CCTV cross sections constructed at the 20% isocontrast level yield good agreement with the total cross sections (TXO) of mobile targets. These CCTVs conform well to the TVOs of the moving targets examined whereby the addition of small uniform margins ensures complete circumscription of the TVO with the inclusion of minimal amounts of surrounding external volumes. The CCTV technique is seen to be clearly superior to the common practice of the addition of safety margins to individual CTV contours in order to account for internal target motion. Margins required with the CCTV technique are eight to ten times smaller than those required with individual CTVs.

9.
Med Phys ; 31(12): 3378-92, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15651621

RESUMO

Accurate planning target volume delineation is vital to the success of conformal radiation techniques such as standard three-dimensional conformal radiotherapy and intensity modulated radiation therapy. With the exception of breath-hold schemes, all current approaches acquire images while the tumor is nonstationary and, as such, are subject to the presence of motion artifacts. In lung cancer sites where tumor mobility can be significant, the detrimental effect of these motion-induced distortions on image quality and subsequently target volume delineation cannot be ignored in the pursuit of improved treatment outcomes. To investigate the fundamental nature and functional dependence of computed tomography (CT) artifacts associated with lung tumor motion, and the implications for tumor delineation, a filtered backprojection algorithm was developed in MATLAB to generate transverse CT simulation images. In addition, a three-dimensional phantom capable of mimicking the essential motions of lung tumors was constructed for experimental verification. Results show that the spatial extent of a mobile object is distorted from its true shape and location and does not accurately reflect the volume occupied during the extent of motion captured. The presence of motion also negatively impacts image intensity (density) integrity rendering accurate volume delineation highly problematic and calling into question the use of such data in CT-based heterogeneity correction algorithms for dosimetric calculation.


Assuntos
Algoritmos , Artefatos , Imageamento Tridimensional/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Movimento , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Inteligência Artificial , Humanos , Armazenamento e Recuperação da Informação/métodos , Neoplasias Pulmonares/radioterapia , Reconhecimento Automatizado de Padrão/métodos , Imagens de Fantasmas , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...