Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
APL Bioeng ; 8(2): 026126, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38911024

RESUMO

Previous lung-on-chip devices have facilitated significant advances in our understanding of lung biology and pathology. Here, we describe a novel lung-on-a-chip model in which human induced pluripotent stem cell-derived alveolar epithelial type II cells (iAT2s) form polarized duct-like lumens alongside engineered perfused vessels lined with human umbilical vein endothelium, all within a 3D, physiologically relevant microenvironment. Using this model, we investigated the morphologic and signaling consequences of the KRASG12D mutation, a commonly identified oncogene in human lung adenocarcinoma (LUAD). We show that expression of the mutant KRASG12D isoform in iAT2s leads to a hyperproliferative response and morphologic dysregulation in the epithelial monolayer. Interestingly, the mutant epithelia also drive an angiogenic response in the adjacent vasculature that is mediated by enhanced secretion of the pro-angiogenic factor soluble uPAR. These results demonstrate the functionality of a multi-cellular in vitro platform capable of modeling mutation-specific behavioral and signaling changes associated with lung adenocarcinoma.

2.
Adv Funct Mater ; 34(17)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38693998

RESUMO

Although tissue culture plastic has been widely employed for cell culture, the rigidity of plastic is not physiologic. Softer hydrogels used to culture cells have not been widely adopted in part because coupling chemistries are required to covalently capture extracellular matrix (ECM) proteins and support cell adhesion. To create an in vitro system with tunable stiffnesses that readily adsorbs ECM proteins for cell culture, we present a novel hydrophobic hydrogel system via chemically converting hydroxyl residues on the dextran backbone to methacrylate groups, thereby transforming non-protein adhesive, hydrophilic dextran to highly protein adsorbent substrates. Increasing methacrylate functionality increases the hydrophobicity in the resulting hydrogels and enhances ECM protein adsorption without additional chemical reactions. These hydrophobic hydrogels permit facile and tunable modulation of substrate stiffness independent of hydrophobicity or ECM coatings. Using this approach, we show that substrate stiffness and ECM adsorption work together to affect cell morphology and proliferation, but the strengths of these effects vary in different cell types. Furthermore, we reveal that stiffness mediated differentiation of dermal fibroblasts into myofibroblasts is modulated by the substrate ECM. Our material system demonstrates remarkable simplicity and flexibility to tune ECM coatings and substrate stiffness and study their effects on cell function.

3.
Mol Ther Nucleic Acids ; 35(2): 102206, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38803421

RESUMO

Huntington's disease (HD) is an incurable neurodegenerative disorder caused by genetic expansion of a CAG repeat sequence in one allele of the huntingtin (HTT) gene. Reducing expression of the mutant HTT (mutHTT) protein has remained a clear therapeutic goal, but reduction of wild-type HTT (wtHTT) is undesirable, as it compromises gene function and potential therapeutic efficacy. One promising allele-selective approach involves targeting the CAG repeat expansion with steric binding small RNAs bearing central mismatches. However, successful genetic encoding requires consistent placement of mismatches to the target within the small RNA guide sequence, which involves 5' processing precision by cellular enzymes. Here, we used small RNA sequencing (RNA-seq) to monitor the processing precision of a limited set of CAG repeat-targeted small RNAs expressed from multiple scaffold contexts. Small RNA-seq identified expression constructs with high-guide strand 5' processing precision and promising allele-selective inhibition of mutHTT. Transcriptome-wide mRNA-seq also identified an allele-selective small RNA with a favorable off-target profile. These results support continued investigation and optimization of genetically encoded repeat-targeted small RNAs for allele-selective HD gene therapy and underscore the value of sequencing methods to balance specificity with allele selectivity during the design and selection process.

4.
Anal Chem ; 95(36): 13528-13536, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37651633

RESUMO

Overgrowth of short tandem repeat sequences in our genes can cause various neurodegenerative disorders. Such repeat sequences are ideal targets for the label-free electrochemical detection of such potential expansions. However, their length- and sequence-dependent secondary structures may interfere with the interfacial charge transfer of a detection platform, making them complex targets. In addition, the gene contains sporadic repeats that may result in false-positive signals. Therefore, it is necessary to design a platform capable of mitigating these effects and ultimately enhancing the specificity of tandem repeats. Here, we analyzed three different backbones of nucleic acid microprobes [DNA, peptide nucleic acid, and lock-nucleic acid (LNA)] to detect in vitro transcribed RNA carrying CAG repeats, which are associated with Huntington's disease, based on the charge-transfer resistance of the interface. We found that the LNA microprobe can distinguish lengths down to the attomolar concentration level and alleviate the effect of secondary structures and sporadic repeats in the sequence, thus distinguishing the "tandem repeats" specifically. Additionally, the control experiments conducted with and without Mg2+ demonstrated the LNA microprobe to perform better in the presence of the divalent cation. The results suggest that the LNA-based platform may eventually lead to the development of a reliable and straightforward biosensor for genetic neurodegenerative disorders.


Assuntos
Doença de Huntington , Ácidos Nucleicos , Ácidos Nucleicos Peptídicos , Humanos , Repetições de Microssatélites , Doença de Huntington/diagnóstico , Doença de Huntington/genética , Estrutura Secundária de Proteína
5.
Cardiovasc Res ; 119(10): 1997-2013, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37267414

RESUMO

AIMS: Novel cancer therapies leading to increased survivorship of cancer patients have been negated by a concomitant rise in cancer therapies-related cardiovascular toxicities. Sunitinib, a first line multi-receptor tyrosine kinase inhibitor, has been reported to cause vascular dysfunction although the initiating mechanisms contributing to this side effect remain unknown. Long non-coding RNAs (lncRNAs) are emerging regulators of biological processes in endothelial cells (ECs); however, their roles in cancer therapies-related vascular toxicities remain underexplored. METHODS AND RESULTS: We performed lncRNA expression profiling to identify potential lncRNAs that are dysregulated in human-induced pluripotent stem cell-derived ECs (iPSC-ECs) treated with sunitinib. We show that the lncRNA hyaluronan synthase 2 antisense 1 (HAS2-AS1) is significantly diminished in sunitinib-treated iPSC-ECs. Sunitinib was found to down-regulate HAS2-AS1 by an epigenetic mechanism involving hypermethylation. Depletion of HAS2-AS1 recapitulated sunitinib-induced detrimental effects on iPSC-ECs, whereas CRISPR-mediated activation of HAS2-AS1 reversed sunitinib-induced dysfunction. We confirmed that HAS2-AS1 stabilizes the expression of its sense gene HAS2 via an RNA/mRNA heteroduplex formation. Knockdown of HAS2-AS1 led to reduced synthesis of hyaluronic acid (HA) and up-regulation of ADAMTS5, an enzyme involved in extracellular matrix degradation, resulting in disruption of the endothelial glycocalyx which is critical for ECs. In vivo, sunitinib-treated mice showed reduced coronary flow reserve, accompanied by a reduction in Has2os and degradation of the endothelial glycocalyx. Finally, we identified that treatment with high molecular-weight HA can prevent the deleterious effects of sunitinib both in vitro and in vivo by preserving the endothelial glycocalyx. CONCLUSIONS: Our findings highlight the importance of lncRNA-mediated regulation of the endothelial glycocalyx as an important determinant of sunitinib-induced vascular toxicity and reveal potential novel therapeutic avenues to attenuate sunitinib-induced vascular dysfunction.


Assuntos
RNA Longo não Codificante , Humanos , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Glicocálix/metabolismo , Células Endoteliais/metabolismo , Sunitinibe/toxicidade , Sunitinibe/metabolismo
6.
Virol J ; 20(1): 90, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149667

RESUMO

Insufficient tracking of virus introduction, spread, and new lineage emergence for the human monkeypox (mpox) virus 1 (hMPXV1) outbreak of 2022 hindered epidemiological studies and public health response. hMPXV1 mutations accumulated unexpectedly faster than predicted. Thus, new variants with altered pathogenicity could emerge and spread without early detection. Whole genome sequencing addresses this gap when implemented but requires widely accessible and standardized methodologies to be effective both regionally and globally. Here we developed a rapid nanopore whole genome sequencing method complete with working protocols, from DNA extraction to phylogenetic analysis tools. Using this method, we sequenced 84 complete hMPXV1 genomes from Illinois, a Midwestern region of the United States, spanning the first few months of the outbreak. The resulting five-fold increase in hMPXV1 genomes from this region established two previously unnamed global lineages, several mutational profiles not seen elsewhere, multiple separate introductions of the virus into the region, and the likely emergence and spread of new lineages from within this region. These results demonstrate that a dearth of genomic sequencing of hMPXV1 slowed our understanding and response to the mpox outbreak. This accessible nanopore sequencing approach makes near real-time mpox tracking and rapid lineage discovery straightforward and creates a blueprint for how to deploy nanopore sequencing for genomic surveillance of diverse viruses and future outbreaks.


Assuntos
Mpox , Sequenciamento por Nanoporos , Humanos , Filogenia , Sequenciamento Completo do Genoma/métodos , Surtos de Doenças
7.
J Biol Chem ; 299(5): 104700, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37059184

RESUMO

Ribonucleoproteins (RNPs) comprise one or more RNA and protein molecules that interact to form a stable complex, which commonly involves conformational changes in the more flexible RNA components. Here, we propose that Cas12a RNP assembly with its cognate CRISPR RNA (crRNA) guide instead proceeds primarily through Cas12a conformational changes during binding to more stable, prefolded crRNA 5' pseudoknot handles. Phylogenetic reconstructions and sequence and structure alignments revealed that the Cas12a proteins are divergent in sequence and structure while the crRNA 5' repeat region, which folds into a pseudoknot and anchors binding to Cas12a, is highly conserved. Molecular dynamics simulations of three Cas12a proteins and their cognate guides revealed substantial flexibility for unbound apo-Cas12a. In contrast, crRNA 5' pseudoknots were predicted to be stable and independently folded. Limited trypsin hydrolysis, differential scanning fluorimetry, thermal denaturation, and CD analyses supported conformational changes of Cas12a during RNP assembly and an independently folded crRNA 5' pseudoknot. This RNP assembly mechanism may be rationalized by evolutionary pressure to conserve CRISPR loci repeat sequence, and therefore guide RNA structure, to maintain function across all phases of the CRISPR defense mechanism.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , RNA , Ribonucleoproteínas , Edição de Genes , Filogenia , Ribonucleoproteínas/genética , RNA Guia de Sistemas CRISPR-Cas/genética , Dobramento de Proteína
8.
Nat Commun ; 14(1): 688, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755019

RESUMO

A proper understanding of disease etiology will require longitudinal systems-scale reconstruction of the multitiered architecture of eukaryotic signaling. Here we combine state-of-the-art data acquisition platforms and bioinformatics tools to devise PAMAF, a workflow that simultaneously examines twelve omics modalities, i.e., protein abundance from whole-cells, nucleus, exosomes, secretome and membrane; N-glycosylation, phosphorylation; metabolites; mRNA, miRNA; and, in parallel, single-cell transcriptomes. We apply PAMAF in an established in vitro model of TGFß-induced epithelial to mesenchymal transition (EMT) to quantify >61,000 molecules from 12 omics and 10 timepoints over 12 days. Bioinformatics analysis of this EMT-ExMap resource allowed us to identify; -topological coupling between omics, -four distinct cell states during EMT, -omics-specific kinetic paths, -stage-specific multi-omics characteristics, -distinct regulatory classes of genes, -ligand-receptor mediated intercellular crosstalk by integrating scRNAseq and subcellular proteomics, and -combinatorial drug targets (e.g., Hedgehog signaling and CAMK-II) to inhibit EMT, which we validate using a 3D mammary duct-on-a-chip platform. Overall, this study provides a resource on TGFß signaling and EMT.


Assuntos
Transição Epitelial-Mesenquimal , Proteínas Hedgehog , Transição Epitelial-Mesenquimal/genética , Proteínas Hedgehog/metabolismo , Células Epiteliais/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
9.
Science ; 378(6625): 1227-1234, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36520914

RESUMO

Synthetic gene circuits that precisely control human cell function could expand the capabilities of gene- and cell-based therapies. However, platforms for developing circuits in primary human cells that drive robust functional changes in vivo and have compositions suitable for clinical use are lacking. Here, we developed synthetic zinc finger transcription regulators (synZiFTRs), which are compact and based largely on human-derived proteins. As a proof of principle, we engineered gene switches and circuits that allow precise, user-defined control over therapeutically relevant genes in primary T cells using orthogonal, US Food and Drug Administration-approved small-molecule inducers. Our circuits can instruct T cells to sequentially activate multiple cellular programs such as proliferation and antitumor activity to drive synergistic therapeutic responses. This platform should accelerate the development and clinical translation of synthetic gene circuits in diverse human cell types and contexts.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Redes Reguladoras de Genes , Genes Sintéticos , Linfócitos T , Fatores de Transcrição , Dedos de Zinco , Humanos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Biologia Sintética/métodos , Linfócitos T/metabolismo , Linfócitos T/transplante , Engenharia Genética
10.
Hum Gene Ther ; 33(15-16): 829-839, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35726380

RESUMO

Short hairpin RNAs, or short hairpin RNAs (shRNAs), are a proven tool for gene knockdown and a promising therapeutic approach for suppression of disease-associated genes. The efficient preparation of shRNA-expressing vectors can sometimes become a bottleneck due to the complexity of shRNA hairpin sequence and structure, especially for repetitive or high GC-content targets. Here, we present improved shRNA cloning and validation methods that enabled efficient and rapid cloning of several shRNAs targeting disease-associated repeat expansions, including GGGGCC, CAG, CTG, CCTG, and CGG into modified pLKO.1 vectors. Improvements included shRNA insert design and preparation, recombination-based cloning, and sequencing-based validation that included Sanger and nanopore long-read sequencing. This improved method should enable practical, efficient cloning of nearly any shRNA sequence.


Assuntos
Vetores Genéticos , Clonagem Molecular , Técnicas de Silenciamento de Genes , Vetores Genéticos/genética , RNA Interferente Pequeno/genética
11.
Nat Commun ; 12(1): 6591, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782635

RESUMO

CRISPR-Cas12a is a leading technology for development of model organisms, therapeutics, and diagnostics. These applications could benefit from chemical modifications that stabilize or tune enzyme properties. Here we chemically modify ribonucleotides of the AsCas12a CRISPR RNA 5' handle, a pseudoknot structure that mediates binding to Cas12a. Gene editing in human cells required retention of several native RNA residues corresponding to predicted 2'-hydroxyl contacts. Replacing these RNA residues with a variety of ribose-modified nucleotides revealed 2'-hydroxyl sensitivity. Modified 5' pseudoknots with as little as six out of nineteen RNA residues, with phosphorothioate linkages at remaining RNA positions, yielded heavily modified pseudoknots with robust cell-based editing. High trans activity was usually preserved with cis activity. We show that the 5' pseudoknot can tolerate near complete modification when design is guided by structural and chemical compatibility. Rules for modification of the 5' pseudoknot should accelerate therapeutic development and be valuable for CRISPR-Cas12a diagnostics.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/química , Sistemas CRISPR-Cas , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Edição de Genes , Ribose/metabolismo , Proteínas de Bactérias/química , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Endodesoxirribonucleases/química , Células HEK293 , Humanos , Ácidos Nucleicos , Patologia Molecular/métodos , RNA , RNA Guia de Cinetoplastídeos/genética , Ribose/química
12.
J Biol Methods ; 8(COVID 19 Spec Iss): e155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631911

RESUMO

In late 2019, a novel coronavirus began spreading in Wuhan, China, causing a potentially lethal respiratory viral infection. By early 2020, the novel coronavirus, called SARS-CoV-2, had spread globally, causing the COVID-19 pandemic. The infection and mutation rates of SARS-CoV-2 make it amenable to tracking introduction, spread and evolution by viral genome sequencing. Efforts to develop effective public health policies, therapeutics, or vaccines to treat or prevent COVID-19 are also expected to benefit from tracking mutations of the SARS-CoV-2 virus. Here we describe a set of comprehensive working protocols, from viral RNA extraction to analysis using established visualization tools, for high throughput sequencing of SARS-CoV-2 viral genomes using a MinION instrument. This set of protocols should serve as a reliable "how-to" reference for generating quality SARS-CoV-2 genome sequences with ARTIC primer sets and long-read nanopore sequencing technology. In addition, many of the preparation, quality control, and analysis steps will be generally applicable to other sequencing platforms.

13.
Biochem Pharmacol ; 189: 114492, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33647260

RESUMO

CRISPR-based therapeutics have entered clinical trials but no methods to inhibit Cas enzymes have been demonstrated in a clinical setting. The ability to inhibit CRISPR-based gene editing or gene targeting drugs should be considered a critical step in establishing safety standards for many CRISPR-Cas therapeutics. Inhibitors can act as a failsafe or as an adjuvant to reduce off-target effects in patients. In this review we discuss the need for clinical inhibition of CRISPR-Cas systems and three existing inhibitor technologies: anti-CRISPR (Acr) proteins, small molecule Cas inhibitors, and small nucleic acid-based CRISPR inhibitors, CRISPR SNuBs. Due to their unique properties and the recent successes of other nucleic acid-based therapeutics, CRISPR SNuBs appear poised for clinical application in the near-term.


Assuntos
Sistemas CRISPR-Cas/efeitos dos fármacos , Edição de Genes/métodos , Marcação de Genes/métodos , Ácidos Nucleicos/administração & dosagem , Animais , Sistemas CRISPR-Cas/fisiologia , Humanos , Ácidos Nucleicos/genética , Ácidos Nucleicos/metabolismo
14.
J Biol Methods ; 8(COVID 19 Spec Iss): e157, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35036458
15.
J Biol Chem ; 296: 100175, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33303627

RESUMO

Methods for rapid and high-throughput screening of transcription in vitro to examine reaction conditions, enzyme mutants, promoter variants, and small molecule modulators can be extremely valuable tools. However, these techniques may be difficult to establish or inaccessible to many researchers. To develop a straightforward and cost-effective platform for assessing transcription in vitro, we used the "Broccoli" RNA aptamer as a direct, real-time fluorescent transcript readout. To demonstrate the utility of our approach, we screened the effect of common reaction conditions and components on bacteriophage T7 RNA polymerase (RNAP) activity using a common quantitative PCR instrument for fluorescence detection. Several essential conditions for in vitro transcription by T7 RNAP were confirmed with this assay, including the importance of enzyme and substrate concentrations, covariation of magnesium and nucleoside triphosphates, and the effects of several typical additives. When we used this method to assess all possible point mutants of a canonical T7 RNAP promoter, our results coincided well with previous reports. This approach should translate well to a broad variety of bacteriophage in vitro transcription systems and provides a platform for developing fluorescence-based readouts of more complex transcription systems in vitro.


Assuntos
Aptâmeros de Nucleotídeos/genética , Bioensaio , RNA Polimerases Dirigidas por DNA/genética , DNA/genética , Reação em Cadeia da Polimerase/métodos , Proteínas Virais/genética , Sequência de Aminoácidos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , DNA/química , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica , Magnésio/química , Magnésio/farmacologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação Puntual , Regiões Promotoras Genéticas , Nucleosídeos de Purina/química , Nucleosídeos de Purina/farmacologia , Nucleosídeos de Pirimidina/química , Nucleosídeos de Pirimidina/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Cloreto de Sódio/química , Cloreto de Sódio/farmacologia , Espectrometria de Fluorescência , Espermidina/química , Espermidina/farmacologia , Frações Subcelulares/metabolismo , Transcrição Gênica , Proteínas Virais/química , Proteínas Virais/metabolismo
16.
ACS Appl Mater Interfaces ; 12(46): 52156-52165, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33151065

RESUMO

Flexible and ultrasensitive biosensing platforms capable of detecting a large number of trinucleotide repeats (TNRs) are crucial for future technology development needed to combat a variety of genetic disorders. For example, trinucleotide CGG repeat expansions in the FMR1 gene can cause Fragile X syndrome (FXS) and Fragile X-associated tremor/ataxia syndrome (FXTAS). Current state-of-the-art technologies to detect repeat sequences are expensive, while relying on complicated procedures, and prone to false negatives. We reasoned that two-dimensional (2D) molybdenum sulfide (MoS2) surfaces may be useful for label-free electrochemical detection of CGG repeats due to its high affinity for guanine bases. Here, we developed a low-cost and sensitive wax-on-plastic electrochemical sensor using 2D MoS2 ink for the detection of CGG repeats. The ink containing few-layered MoS2 nanosheets was prepared and characterized using optical, electrical, electrochemical, and electron microscopic methods. The devices were characterized by electron microscopic and electrochemical methods. Repetitive CGG DNA was adsorbed on a MoS2 surface in a high cationic strength environment and the electrocatalytic current of the CGG/MoS2 interface was recorded using a soluble Fe(CN)6-3/-4 redox probe by differential pulse voltammetry (DPV). The dynamic range for the detection of prehybridized duplexes ranged from 1 aM to 100 nM with a 3.0 aM limit of detection. A detection range of 100 fM to 1 nM was recorded for surface hybridization events. Using this method, we were able to observe selectivity of MoS2 for CGG repeats and distinguish nonpathogenic from disease-associated repeat lengths. The detection of CGG repeat sequences on inkjet printable 2D MoS2 surfaces is a forward step toward developing chip-based rapid and label-free sensors for the detection of repeat expansion sequences.


Assuntos
DNA/análise , Dissulfetos/química , Técnicas Eletroquímicas/métodos , Tinta , Molibdênio/química , Repetições de Trinucleotídeos , Catálise , Técnicas Eletroquímicas/instrumentação , Eletrodos , Ferrocianetos/química , Limite de Detecção , Oxirredução , Propriedades de Superfície
17.
Nat Commun ; 11(1): 3377, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32632100

RESUMO

The mammary gland is a highly vascularized tissue capable of expansion and regression during development and disease. To enable mechanistic insight into the coordinated morphogenic crosstalk between the epithelium and vasculature, we introduce a 3D microfluidic platform that juxtaposes a human mammary duct in proximity to a perfused endothelial vessel. Both compartments recapitulate stable architectural features of native tissue and the ability to undergo distinct forms of branching morphogenesis. Modeling HER2/ERBB2 amplification or activating PIK3CA(H1047R) mutation each produces ductal changes observed in invasive progression, yet with striking morphogenic and behavioral differences. Interestingly, PI3KαH1047R ducts also elicit increased permeability and structural disorganization of the endothelium, and we identify the distinct secretion of IL-6 as the paracrine cause of PI3KαH1047R-associated vascular dysfunction. These results demonstrate the functionality of a model system that facilitates the dissection of 3D morphogenic behaviors and bidirectional signaling between mammary epithelium and endothelium during homeostasis and pathogenesis.


Assuntos
Glândulas Mamárias Humanas/metabolismo , Morfogênese/genética , Mutação , Comunicação Parácrina/genética , Biomimética/métodos , Linhagem Celular , Células Cultivadas , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Endotélio Vascular/crescimento & desenvolvimento , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Glândulas Mamárias Humanas/irrigação sanguínea , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Fenótipo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
18.
Chembiochem ; 21(19): 2792-2804, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32372560

RESUMO

Infrared spectroscopy detects the formation of G-quadruplexes in guanine-rich nucleic acid sequences through shifts in the guanine C=O stretch mode. Here, we use ultrafast 2D infrared (IR) spectroscopy and isotope substitution to show that these shifts arise from vibrational delocalization among stacked G-quartets. This provides a direct measure of the sizes of locally ordered motifs in heterogeneous samples with substantial disordered regions. We find that parallel-stranded, potassium-bound DNA G-quadruplexes are limited to five consecutive G-quartets and 3-4 consecutive layers are preferred for longer polyguanine tracts. The resulting potassium-dependent G-quadruplex assembly landscape reflects the polyguanine tract lengths found in genomes, the ionic conditions prevalent in healthy mammalian cells, and the onset of structural disorder in disease states. Our study describes spectral markers that can be used to probe other G-quadruplex structures and provides insight into the fundamental limits of their formation in biological and artificial systems.


Assuntos
DNA/química , DNA/síntese química , Quadruplex G , Humanos , Conformação de Ácido Nucleico , Tamanho da Partícula , Espectrofotometria Infravermelho
19.
Hum Genet ; 139(10): 1233-1246, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32277284

RESUMO

Approximately 3% of the human genome is composed of short tandem repeat (STR) DNA sequence known as microsatellites, which can be found in both coding and non-coding regions. When associated with genic regions, expansion of microsatellite repeats beyond a critical threshold causes dozens of neurological repeat expansion disorders. To better understand the molecular pathology of repeat expansion disorders, precise cloning of microsatellite repeat sequence and expansion size is highly valuable. Unfortunately, cloning repeat expansions is often challenging and presents a significant bottleneck to practical investigation. Here, we describe a clear method for seamless and systematic cloning of practically any microsatellite repeat expansion. We use cloning and expansion of GGGGCC repeats, which are the leading genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), as an example. We employ a recursive directional ligation (RDL) technique to build multiple GGGGCC repeat-containing vectors. We describe methods to validate repeat expansion cloning, including diagnostic restriction digestion, PCR across the repeat, and next-generation long-read MinION nanopore sequencing. Validated cloning of microsatellite repeats beyond the critical expansion threshold can facilitate step-by-step characterization of disease mechanisms at the cellular and molecular level.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Clonagem Molecular/métodos , Expansão das Repetições de DNA , Demência Frontotemporal/genética , Repetições de Microssatélites , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Sequência de Bases , Proteína C9orf72/metabolismo , Enzimas de Restrição do DNA/química , Escherichia coli/genética , Escherichia coli/metabolismo , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Genoma Humano , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reação em Cadeia da Polimerase/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
Nucleic Acids Res ; 48(9): 4643-4657, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32282904

RESUMO

We report on the synthesis of siRNAs containing both 2'-5'- and 3'-5'-internucleotide linkages and their effects on siRNA structure, function, and interaction with RNAi proteins. Screening of these siRNAs against their corresponding mRNA targets showed that 2'-5' linkages were well tolerated in the sense strand, but only at a few positions in the antisense strand. Extensive modification of the antisense strand minimally affected 5'-phosphorylation of the siRNA by kinases, however, it negatively affected siRNA loading into human AGO2. Modelling and molecular dynamics simulations were fully consistent with these findings. Furthermore, our studies indicated that the presence of a single 5'p-rN1-(2'-5')-N2 unit in the antisense strand does not alter the 'clover leaf' bend and sugar puckers that are critical for anchoring the 5'-phosphate to Ago 2 MID domain. Importantly, 2'-5'-linkages had the added benefit of abrogating immune-stimulatory activity of siRNAs. Together, these results demonstrate that 2'-5'/3'-5'-modified siRNAs, when properly designed, can offer an efficient new class of siRNAs with diminished immune-stimulatory responses.


Assuntos
Interferência de RNA , RNA Interferente Pequeno/química , Proteínas Argonautas/metabolismo , Configuração de Carboidratos , Células HeLa , Humanos , Luciferases de Vaga-Lume/genética , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , RNA Interferente Pequeno/síntese química , RNA Interferente Pequeno/imunologia , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...