Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(1): e2312533120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38147561

RESUMO

Interfaces of glassy materials such as thin films, blends, and composites create strong unidirectional gradients to the local heterogeneous dynamics that can be used to elucidate the length scales and mechanisms associated with the dynamic heterogeneity of glasses. We focus on bilayer films of two different polymers with very different glass transition temperatures ([Formula: see text]) where previous work has demonstrated a long-range (∼200 nm) profile in local [Formula: see text] is established between immiscible glassy and rubbery polymer domains when the polymer-polymer interface is formed to equilibrium. Here, we demonstrate that an equally long-ranged gradient in local modulus [Formula: see text] is established when the polymer-polymer interface ([Formula: see text]5 nm) is formed between domains of glassy polystyrene (PS) and rubbery poly(butadiene) (PB), consistent with previous reports of a broad [Formula: see text] profile in this system. A continuum physics model for the shear wave propagation caused by a quartz crystal microbalance across a PB/PS bilayer film is used to measure the viscoelastic properties of the bilayer during the evolution of the PB/PS interface showing the development of a broad gradient in local modulus [Formula: see text] spanning [Formula: see text]180 nm between the glassy and rubbery domains of PS and PB. We suggest these broad profiles in [Formula: see text] and [Formula: see text] arise from a coupling of the spectrum of vibrational modes across the polymer-polymer interface as a result of acoustic impedance matching of sound waves with [Formula: see text] nm during interface broadening that can then trigger density fluctuations in the neighboring domain.

2.
ACS Macro Lett ; 9(11): 1625-1631, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35617064

RESUMO

Profiles in the local glass transition temperature Tg(z) within polystyrene (PS) next to polydimethylsiloxane (PDMS) domains were determined using a localized fluorescence method. By changing the base to cross-linker ratio, we varied the cross-link density and, hence, the Young's modulus of PDMS (Sylgard 184). The local Tg(z) in PS at a distance of z = 50 nm away from the PS/PDMS interface was found to shift by 40 K as the PDMS modulus was varied from 0.9 to 2.6 MPa, demonstrating a strong sensitivity of this phenomenon to the rigidity of the neighboring domain. The extent the Tg(z) perturbation persists away from the PS/PDMS interface, z ≈ 65-90 nm before bulk Tg is recovered, is much shorter for this strongly immiscible system compared with the weakly immiscible systems studied previously, which we attribute to a smaller interfacial width, as the χ parameter for PS/PDMS is an order of magnitude larger.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...