Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5304, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652926

RESUMO

Vitamin B6 is an essential nutrient with extensive applications in the medicine, food, animal feed, and cosmetics industries. Pyridoxine (PN), the most common commercial form of vitamin B6, is currently chemically synthesized using expensive and toxic chemicals. However, the low catalytic efficiencies of natural enzymes and the tight regulation of the metabolic pathway have hindered PN production by the microbial fermentation process. Here, we report an engineered Escherichia coli strain for PN production. Parallel pathway engineering is performed to decouple PN production and cell growth. Further, protein engineering is rationally designed including the inefficient enzymes PdxA, PdxJ, and the initial enzymes Epd and Dxs. By the iterative multimodule optimization strategy, the final strain produces 1.4 g/L of PN with productivity of 29.16 mg/L/h by fed-batch fermentation. The strategies reported here will be useful for developing microbial strains for the production of vitamins and other bioproducts having inherently low metabolic fluxes.


Assuntos
Proteínas de Escherichia coli , Piridoxina , Animais , Vitamina B 6 , Vitaminas , Engenharia de Proteínas , Escherichia coli/genética , Ligases , Proteínas de Escherichia coli/genética
2.
Front Bioeng Biotechnol ; 10: 895283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573247

RESUMO

Aquatic products are delicious and have high nutritive value, however, they are highly perishable during storage due to the growth and metabolism of microorganisms. The spoilage process of aquatic products was demonstrated to be highly related to the composition of microorganisms, in which the specific spoilage organisms (SSOs) are the main factors. In this article, the spoilage indicators of SSOs were systematically described, which could make a comprehensive evaluation of the quality of aquatic products. Quorum sensing (QS) regulates the growth, metabolism and characteristics of SSOs, the common signaling molecules and the QS system in the major SSOs of aquatic products were discussed. Moreover, we compared various technologies for the analysis of SSOs in aquatic products. Besides, quality control techniques based on microbiota regulating of aquatic products, including physical, chemical and biological preservation strategies, were also compared. In conclusion, novel preservation technologies and hurdle techniques are expected to achieve comprehensive inhibition of SSOs.

3.
J Ind Microbiol Biotechnol ; 47(12): 1161-1172, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32935229

RESUMO

Phytase is an additive in animal feed that degrades phytic acid in plant material, reducing feeding costs, and pollution from fecal phosphorus excretion. A multistrategy approach was adopted to improve the expression of E. coli phytase in Pichia pastoris. We determined that the most suitable signal peptide for phytase secretion was an α-factor secretion signal with an initial enzyme activity of 153.51 U/mL. Increasing the copy number of this gene to four increased phytase enzyme activity by 234.35%. PDI overexpression and Pep4 gene knockout increased extracellular phytase production by 35.33% and 26.64%, respectively. By combining favorable factors affecting phytase expression and secretion, the enzyme activity of the phytase-engineered strain was amplified 384.60% compared with that of the original strain. We also evaluated the potential for the industrial production of the engineered strain using a 50-L fed-batch fermenter and achieved a total activity of 30,246 U/mL after 180 h of fermentation.


Assuntos
6-Fitase , Escherichia coli , Pichia , 6-Fitase/biossíntese , Reatores Biológicos , Escherichia coli/metabolismo , Fermentação , Ácido Fítico/metabolismo , Pichia/genética , Sinais Direcionadores de Proteínas , Saccharomycetales
4.
Bioprocess Biosyst Eng ; 43(10): 1735-1745, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32399750

RESUMO

Vitamin B12 is a crucial fine chemical that is widely used in the pharmaceutical, food and chemical industries, and its production solely dependents on microbial fermentation. We previously constructed an artificial vitamin B12 biosynthesis pathway in Escherichia coli, but the yield of the engineered strains was low. Here, we removed metabolic bottlenecks of the vitamin B12 biosynthesis pathway in engineered E. coli strains. After screening cobB genes from different sources, optimizing the expression of cobN and customizing the ribosome binding sites of cobS and cobT, the vitamin B12 yield increased to 152.29 µg/g dry cell weight (DCW). Optimization of the downstream module, which converts co(II)byrinic acid a,c-diamide into adenosylcobinamide phosphate, elevated the vitamin B12 yield to 249.04 µg/g DCW. A comparison of a variety of equivalent components indicated that glucose and corn steep liquor are optimal carbon and nitrogen sources, respectively. Finally, an orthogonal array design was applied to determine the optimal concentrations of glucose and nitrogen sources including corn steep liquor and yeast extract, through which a vitamin B12 yield of 530.29 µg/g DCW was obtained. The metabolic modifications and optimization of fermentation conditions achieved in this study offer a basis for further improving vitamin B12 production in E. coli and will hopefully accelerate its industrial application.


Assuntos
Vias Biossintéticas , Meios de Cultura/química , Escherichia coli , Engenharia Metabólica , Vitamina B 12 , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Vitamina B 12/biossíntese , Vitamina B 12/genética
5.
J Microbiol Biotechnol ; 29(3): 419-428, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30786696

RESUMO

Phytases are enzymes that can hydrolyze phytate and its salts into inositol and phosphoric acid, and have been utilized to increase the availability of nutrients in animal feed and mitigate environmental pollution. However, the enzymes’low thermostability has limited their application during the feed palletization process. In this study, a combination of B-value calculation and protein surface engineering was applied to rationally evolve the heat stability of Escherichia coli phytase. After systematic alignment and mining for homologs of the original phytase from the histidine acid phosphatase family, the two models 1DKL and 1DKQ were chosen and used to identify the B-values and spatial distribution of key amino acid residues. Consequently, thirteen potential amino acid mutation sites were obtained and categorized into six domains to construct mutant libraries. After five rounds of iterative mutation screening, the thermophilic phytase mutant P56214 was finally yielded. Compared with the wild-type, the residual enzyme activity of the mutant increased from 20% to 75% after incubation at 90°C for 5 min. Compared with traditional methods, the rational engineering approach used in this study reduces the screening workload and provides a reference for future applications of phytases as green catalysts.


Assuntos
6-Fitase/química , 6-Fitase/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Engenharia de Proteínas , Fosfatase Ácida , Sequência de Aminoácidos , Ração Animal , Ensaios Enzimáticos , Estabilidade Enzimática , Cinética , Modelos Moleculares , Mutagênese , Mutação , Ácido Fítico/metabolismo , Conformação Proteica , Domínios Proteicos , Alinhamento de Sequência , Temperatura
6.
Food Technol Biotechnol ; 56(1): 58-64, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29795997

RESUMO

To improve the properties of α-amylase from Bacillus stearothermophilus (AmyS), a deletion mutant AmyS∆R179-G180 was constructed by deleting arginine (Arg179) and glycine (Gly180) using site-directed mutagenesis. AmyS and AmyS∆R179-G180 were expressed in Bacillus subtilis and purified by ammonium sulfate precipitation, after which the enzymatic properties were characterized and compared. By deleting amino acids Arg179 and Gly180, the thermostability of α-amylase AmyS∆R179-G180 was enhanced and the half-life at 100 °C significantly increased from 24 to 33 min. In addition, AmyS∆R179-G180 exhibited greater acid resistance and lower calcium requirements to maintain α-amylase activity. The secretory capacity of the recombinant strain was evaluated by fed-batch fermentation in a 7.5-litre fermentor in which high α-amylase activity was obtained. The highest activity reached 3300 U/mL with a high productivity of 45.8 U/(mL·h).

7.
Bioresour Bioprocess ; 4(1): 9, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28191448

RESUMO

BACKGROUND: Food-grade expression systems require that the resultant strains should only contain materials from food-safe microorganisms, and no antibiotic resistance marker can be utilized. To develop a food-grade expression system for d-psicose 3-epimerase production, we use an alanine racemase-encoding gene as selection marker in Bacillus subtilis. RESULTS: In this study, the d-alanine racemase-encoding gene dal was deleted from the chromosome of B. subtilis 1A751 using Cre/lox system to generate the food-grade host. Subsequently, the plasmid-coded selection marker dal was complemented in the food-grade host, and RDPE was thus successfully expressed in dal deletion strain without addition of d-alanine. The selection appeared highly stringent, and the plasmid was stably maintained during culturing. The highest RDPE activity in medium reached 46 U/ml at 72 h which was comparable to RDPE production in kanamycin-based system. Finally, the capacity of the food-grade B. subtilis 1A751D2R was evaluated in a 7.5 l fermentor with a fed-batch fermentation. CONCLUSION: The alanine racemase-encoding gene can be used as a selection marker, and the food-grade expression system was suitable for heterologous proteins production in B. subtilis.

8.
Microb Cell Fact ; 14: 92, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26112883

RESUMO

BACKGROUND: Secretory expression of valuable proteins by B. subtilis and its related species has attracted intensive work over the past three decades. Although very high yields can be achieved with homologous proteins, production of heterologous proteins by B. subtilis is unfortunately not the straight forward. The Sec pathway is the major route for protein secretion in B. subtilis. Therefore, the aim of this work was to identify the bottlenecks of the Sec pathway and improve the secretion of heterologous proteins by molecular genetic techniques. RESULTS: Two α-amylases (AmyL and AmyS) both under the control of the P(HpaII) promoter and equipped with their native signal peptides SP(amyl) and SP(amyS) were successfully secreted with significantly different expression levels. To improve the secretion efficiency, 23 main genes or gene operons involved in or closely related to the Sec pathway were overexpressed singly by increasing an additional copy on the chromosome, and the overexpression of prsA enhanced the production of α-amylases (AmyL and AmyS) by 3.2- and 5.5-fold, respectively. With the induction by xylose of different concentrations, prsA overexpression level was optimized and the secretion efficiency of α-amylase was further improved. Moreover, combinatorial overexpression of prsA and nine screened genes or gene operons, respectively, was performed, and the overexpression of prsA combined with partial dnaK operon improved the α-amylase activity of AmyL and AmyS by 160 and 173%, respectively, compared with the overexpression of prsA singly. Finally, the performance of the recombinant B. subtilis 1A237 was evaluated with the fed-batch fermentation in 7.5 L fermentor, and the level of secreted AmyL and AmyS reached 1,352 and 2,300 U/mL with the productivity of 16.1 U/mL h and 27.4 U/mL h, respectively. CONCLUSIONS: Our systematic gene overexpression approach was designed to investigate the bottleneck of Sec pathway in B. subtilis. The deficiency of PrsA lipoprotein and chaperones of DnaK series was main rate-limiting factors for heterologous proteins secretion. Systematic and deep insight into how components of Sec pathway interact with each other may be the key to improving the yield of heterologous proteins thoroughly.


Assuntos
Bacillus subtilis/metabolismo , Expressão Gênica/genética , Regiões Promotoras Genéticas/genética , Transporte Proteico/genética
9.
Biotechnol Lett ; 37(4): 899-906, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25515799

RESUMO

α-Amylase was used as a heterologous model protein to investigate the effects of promoters, signal peptides and over-expression of an extra-cytoplasmic molecular chaperone, PrsA lipoprotein, on enhancing the secretion of α-amylase in Bacillus subtilis. Four promoters and six signal peptides were compared, successively, and the highest yield of α-amylase was achieved under the promotion mediated by PAprE, a strong constitutive promoter, and secretion by SPnprE, a signal peptide from B. subtilis. Moreover, under conditions of overexpressed PrsA lipoprotein, the secretion production and activity of α-amylase increased to 2.5-fold. The performance of the recombinant B. subtilis 1A751PL31 was evaluated with a fed-batch fermentation in a 7.5 l fermentor. Optimization of regulatory elements and over-expression of PrsA lipoprotein had a significant effect on enhancing the production of α-amylase in B. subtilis.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , alfa-Amilases/genética , alfa-Amilases/metabolismo , Expressão Gênica , Engenharia Metabólica , Regiões Promotoras Genéticas , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Vet Res ; 44: 21, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23537346

RESUMO

The bovine immunodeficiency virus (BIV) transactivator (BTat) recruits the bovine cyclin T1 (B-cyclin T1) to the LTR to facilitate the transcription of BIV. Here, we demonstrate that bovine hexamethylene bisacetamide (HMBA)-induced protein 1 (BHEXIM1) inhibits BTat-mediated BIV LTR transcription. The results of in vivo and in vitro assays show direct binding of BHEXIM1 to the B-cyclin T1. These results suggest that the repression arises from BHEXIM1-BTat competition for B-cyclin T1, which allows BHEXIM1 to displace BTat from B-cyclin T1. Furthermore, we found that the C-terminal region and the centrally located region of BHEXIM1 are required for BHEXIM1 to associate with B-cyclin T1. Knockdown of BHEXIM1 enhances BIV replication. Taken together, our study provides the first clear evidence that BHEXIM1 is involved in BIV replication through regulating BTat-mediated transactivation.


Assuntos
Ciclina T/genética , Vírus da Imunodeficiência Bovina/metabolismo , Fator B de Elongação Transcricional Positiva/genética , Proteínas dos Retroviridae/metabolismo , Sequências Repetidas Terminais , Ativação Transcricional , Animais , Bovinos , Ciclina T/metabolismo , Escherichia coli , Plasmídeos , Reação em Cadeia da Polimerase/veterinária , Fator B de Elongação Transcricional Positiva/metabolismo
11.
Virol J ; 6: 179, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19860923

RESUMO

BACKGROUND: Jembrana disease virus (JDV) encodes a potent regulatory protein Tat that strongly stimulates viral expression by transactivating the long terminal repeat (LTR) promoter. JDV Tat (jTat) promotes the transcription from its own LTR as well as non-cognate LTRs, by recruiting host transcription factors and facilitating transcriptional elongation. Here, we compared the sequence requirements of jTat for transactivation of JDV, bovine immunodeficiency virus (BIV) and human immunodeficiency virus (HIV) LTRs. RESULTS: In this study, we identified the minimal protein sequence for LTR activation using jTat truncation mutants. We found that jTat N-terminal residues were indispensable for transactivating the HIV LTR. In contrast, transactivation of BIV and JDV LTRs depended largely on an arginine-rich motif and some flanking residues. Competitive inhibition assay and knockdown analysis showed that P-TEFb was required for jTat-mediated LTR transactivation, and a mammalian two-hybrid assay revealed the robust interaction of jTat with cyclin T1. In addition, HIV LTR transactivation was largely affected by fusion protein at the jTat N-terminus despite the fact that the cyclin T1-binding affinity was not altered. Furthermore, the jTat N-terminal sequence enabled HIV Tat to transactivate BIV and JDV LTRs, suggesting the flexibility at the jTat N-terminus. CONCLUSION: This study showed the distinct sequence requirements of jTat for HIV, BIV and JDV LTR activation. Residues responsible for interaction with cyclin T1 and transactivation response element are the key determinants for transactivation of its cognate LTR. N-terminal residues in jTat may compensate for transactivation of the HIV LTR, based on the flexibility.


Assuntos
Regulação Viral da Expressão Gênica , Produtos do Gene tat/metabolismo , Vírus da Imunodeficiência Bovina/fisiologia , Regiões Promotoras Genéticas , Sequências Repetidas Terminais , Sequência de Aminoácidos , Animais , Sítios de Ligação , Ciclina T/metabolismo , HIV/fisiologia , Células HeLa , Humanos , Dados de Sequência Molecular , Ligação Proteica , Mapeamento de Interação de Proteínas , Deleção de Sequência , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...