Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 926: 172017, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38552976

RESUMO

As global warming intensifies, extreme heat is becoming increasingly frequent. These extreme heatwaves have decreased the milk production of dairy animals such as cows and goats and have caused significant damage to the entire dairy industry. It is known that heat stress (HS) can induce the apoptosis and autophagy of mammary epithelial cells (MECs), leading to a decrease in lactating MECs. L-arginine can effectively attenuate HS-induced decreases in milk yield, but the exact mechanisms are not fully understood. In this study, we found that HS upregulated the arginine sensor CASTOR1 in mouse MECs. Arginine activated mTORC1 activity through CASTOR1 and promoted mitochondrial biogenesis through the mTORC1/PGC-1α/NRF1 pathway. Moreover, arginine inhibited mitophagy through the CASTOR1/PINK1/Parkin pathway. Mitochondrial homeostasis ensures ATP synthesis and a stable cellular redox state for MECs under HS, further alleviating HS-induced damage and improving the lactation performance of MECs. In conclusion, these findings reveal the molecular mechanisms by which L-arginine relieves HS-induced mammary gland injury, and suggest that the intake of arginine-based feeds or feed additives is a promising method to increase the milk yield of dairy animals in extreme heat conditions.


Assuntos
Transtornos de Estresse por Calor , Lactação , Feminino , Animais , Bovinos , Camundongos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Leite/metabolismo , Resposta ao Choque Térmico , Homeostase , Arginina/metabolismo
2.
Foods ; 12(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37444363

RESUMO

The development of natural antimicrobial agents offers new strategies for food preservation due to the health hazards associated with the spoilage of meat products caused by microbial contamination. In this paper, the inhibitory mechanism of protocatechualdehyde (PCA) on Listeria monocytogenes was described, and its effect on the preservation of cooked chicken breast was evaluated. The results showed that the minimal inhibitory concentration (MIC) of PCA on L. monocytogenes was 0.625 mg/mL. Secondly, PCA destroyed the integrity of the L. monocytogenes cell membrane, which was manifested as a decrease in membrane hyperpolarization, intracellular ATP level, and intracellular pH value. Field emission gun scanning electron microscopy (FEG-SEM) observed a cell membrane rupture. Transcriptome analysis showed that PCA may inhibit cell growth by affecting amino acid, nucleotide metabolism, energy metabolism, and the cell membrane of L. monocytogenes. Additionally, it was discovered that PCA enhanced the color and texture of cooked chicken breast meat while decreasing the level of thiobarbituric acid active substance (TBARS). In conclusion, PCA as a natural antibacterial agent has a certain reference value in extending the shelf life of cooked chicken breast.

3.
J Agric Food Chem ; 70(17): 5386-5395, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442666

RESUMO

Heat stress is one of the most important factors limiting the milk yields of dairy animals. This decline can be attributed to the heat-stress-induced apoptosis of mammary epithelial cells (MECs). The cytosolic arginine sensor for mTORC1 subunit 1 (CASTOR1) is a crucial upstream regulator of the mechanistic target of rapamycin complex 1 (mTORC1) signaling, which has close connections with apoptosis. However, the specific roles of CASTOR1 in regulating the apoptosis and lactation of MECs are still obscure. In the present study, we found that heat stress promotes apoptosis and CASTOR1's expression in HC11 cells. Downregulation of CASTOR1 inhibits heat-stress-induced apoptosis through a ROS-independent pathway. In addition, silencing of CASTOR1 promotes cell proliferation, cell cycle progression, and milk component synthesis, and overexpressing of CASTOR1 reverses these observations. Furthermore, we found that silencing of CASTOR1 contributes to the nuclear transport of SREBP1 and promotes lipid synthesis. This study demonstrates the pivotal roles of CASTOR1 in heat-stress-induced apoptosis and milk component synthesis in MECs.


Assuntos
Caseínas , Peptídeos e Proteínas de Sinalização Intracelular , Animais , Apoptose , Caseínas/genética , Caseínas/metabolismo , Regulação para Baixo , Células Epiteliais/metabolismo , Feminino , Resposta ao Choque Térmico , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lactação , Lipídeos , Glândulas Mamárias Animais/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
4.
Int J Biol Macromol ; 209(Pt A): 299-314, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35381282

RESUMO

Antibiotic-resistant bacteria (including MRSA) in the clinic pose a growing threat to public health, and antimicrobial peptides (AMPs) have great potential as efficient treatment alternatives. Houseflies have evolved over long periods in complex, dirty environments, developing a special immune system to overcome challenges in harmful environments. AMPs are key innate immune molecules. Herein, two differentially expressed AMPs, Phormicins A and B, were identified by screening transcriptomic changes in response to microbial stimulation. Structural mimic assays indicated that these AMPs exhibited functional divergence due to their C-terminal features. Expression analysis showed that they had different expression patterns. Phormicin B had higher constitutive expression than Phormicin A. However, Phormicin B was sharply downregulated, whereas Phormicin A was highly upregulated, after microbial stimulation. The MIC, MBC and time-growth curves showed the antibacterial spectrum of these peptides. Crystal violet staining and SEM showed that Phormicin D inhibited MRSA biofilm formation. TEM suggested that Phormicin D disrupted the MRSA cell membrane. Furthermore, Phormicin D inhibited biofilm formation by downregulating the expression of biofilm-related genes, including altE and embp. Therefore, housefly Phormicins were functionally characterized as having differential expression patterns and antibacterial & antibiofilm activities. This study provides a new potential peptide for clinical MRSA therapy.


Assuntos
Moscas Domésticas , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Antimicrobianos , Biofilmes , Moscas Domésticas/genética , Testes de Sensibilidade Microbiana
5.
Molecules ; 26(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34771154

RESUMO

Plant-derived antimicrobial agents have adequate antimicrobial effects on food-borne pathogens, which can be used as food preservatives. The purpose of this study was to evaluate the antibacterial mechanism of chlorogenic acid (CA) against Yersinia enterocolitica and Enterobacter sakazakii. The minimum inhibitory concentration (MIC) of CA was determined by employing the broth microdilution method. Then, the cell function and morphological changes of Y. enterocolitica and E. sakazakii treated with CA were characterized. Finally, the growth inhibition models of Y. enterocolitica in raw pork and E. sakazakii in skim milk were constructed through the response surface methodology. The results demonstrated that CA has a satisfactory inhibitory effect against Y. enterocolitica and E. sakazakii with a MIC of 2.5 mg/mL. In addition, CA inhibited the growth of Y. enterocolitica and E. sakazakii via cell membrane damage, such as depolarization of the cell membrane, reduction in intracellular adenosine triphosphate (ATP) and pH levels, and destruction of cell morphology. Moreover, CA reduced two log cycles of Y. enterocolitica in raw pork and E. sakazakii in skim milk at a certain temperature. According to the corresponding findings, CA has the potential to be developed as an effective preservative to control Y. enterocolitica and E. sakazakii-associated foodborne diseases.


Assuntos
Antibacterianos/farmacologia , Ácido Clorogênico/farmacologia , Cronobacter sakazakii/efeitos dos fármacos , Conservação de Alimentos , Yersinia enterocolitica/efeitos dos fármacos , Animais , Antibacterianos/química , Membrana Celular/efeitos dos fármacos , Ácido Clorogênico/química , Cronobacter sakazakii/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Leite/efeitos dos fármacos , Leite/microbiologia , Carne de Porco/microbiologia , Yersinia enterocolitica/crescimento & desenvolvimento
6.
Front Genet ; 12: 608936, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168671

RESUMO

The Wnt signaling pathway is an evolutionarily conserved signaling pathway that plays essential roles in embryonic development, organogenesis, and many other biological activities. Both Wnt proteins and DIX proteins are important components of Wnt signaling. Systematic studies of Wnt and DIX families at the genome-wide level may provide a comprehensive landscape to elucidate their functions and demonstrate their relationships, but they are currently lacking. In this report, we describe the correlations between mouse Wnt and DIX genes in family expansion, molecular evolution, and expression levels in cardiac hypertrophy at the genome-wide scale. We observed that both the Wnt and DIX families underwent more expansion than the overall average in the evolutionarily early stage. In addition, mirrortree analyses suggested that Wnt and DIX were co-evolved protein families. Collectively, these results would help to elucidate the evolutionary characters of Wnt and DIX families and demonstrate their correlations in mediating cardiac hypertrophy.

7.
Cell Biosci ; 10: 72, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32489586

RESUMO

BACKGROUND: Arginine vasopressin (AVP) is elevated in patients with heart failure, and the increase in the AVP concentration in plasma is positively correlated with disease severity and mortality. Metoprolol (Met) is a beta blocker that is widely used in the clinic to treat pathological cardiac hypertrophy and to improve heart function. However, the specific mechanism by which Met alleviates AVP-induced pathological cardiac hypertrophy is still unknown. Our current study aimed to evaluate the inhibitory effects of Met on AVP-induced cardiomyocyte hypertrophy and the underlying mechanisms. METHODS: AVP alone or AVP plus Met was added to the wild type or AKT1-overexpressing rat cardiac H9C2 cell line. The cell surface areas and ANP/BNP/ß-MHC expressions were used to evaluate the levels of hypertrophy. Western bolting was used to analyze AKT1/P-AKT1, AKT2/P-AKT2, total AKT, SERCA2, and Phospholamban (PLN) expression. Fluo3-AM was used to measure the intracellular Ca2+ stores. RESULTS: In the current study, we found that AKT1 but not AKT2 mediated the pathogenesis of AVP-induced cardiomyocyte hypertrophy. Sustained stimulation (48 h) with AVP led to hypertrophy in the H9C2 rat cardiomyocytes, resulting in the downregulation of AKT1 (0.48 fold compared to control) and SERCA2 (0.62 fold), the upregulation of PLN (1.32 fold), and the increase in the cytoplasmic calcium concentration (1.52 fold). In addition, AKT1 overexpression increased the expression of SERCA2 (1.34 fold) and decreased the expression of PLN (0.48 fold) in the H9C2 cells. Moreover, we found that Met could attenuate the AVP-induced changes in AKT1, SERCA2 and PLN expression and decreased the cytoplasmic calcium concentration in the H9C2 cells. CONCLUSIONS: Our results demonstrated that the AKT1-SERCA2 cascade served as an important regulatory pathway in AVP-induced pathological cardiac hypertrophy.

8.
Int J Biol Macromol ; 150: 141-151, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32045613

RESUMO

Toll-like receptors (TLRs) are the earliest reported pathogen recognition receptors (PRRs), and these receptors play pivotal roles in the innate immune system. Systematic studies of TLR family at the genome-wide level are important to understand its functions but are currently lacking in the insect lineage. Here, 6 TLR genes were identified and characterized in housefly (Musca domestica). The TLR genes of housefly were classified into five families according to the phylogenetic analysis of insect TLRs. The domain organization analyses indicated that the TLRs were composed by three major components: a leucine-rich repeat (LRR) domain, a transmembrane region (TM) and a Toll/interleukin-1 receptor (TIR) domain. Primary and tertiary structure analysis showed that the ectodomains of arthropod TLRs were longer than that of other phyla or classes. The mRNA expression levels of all 6 TLRs downregulated in the resistant housefly strain. Moreover, the expression levels of 6 TLRs varied between tissue and gender. Additionally, the 3D structures of the TIR domain were highly conserved during evolution. Collectively, these results help elucidate the crucial roles of TLRs in the immune response of housefly and provide a foundation for further understanding of innate immunity of the housefly.


Assuntos
Genoma de Inseto , Genômica , Moscas Domésticas/efeitos dos fármacos , Moscas Domésticas/genética , Resistência a Inseticidas/genética , Receptores Toll-Like/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Evolução Molecular , Feminino , Genômica/métodos , Moscas Domésticas/metabolismo , Imunidade Inata , Masculino , Modelos Moleculares , Família Multigênica , Especificidade de Órgãos/genética , Filogenia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Fatores Sexuais , Receptores Toll-Like/química
9.
Genomics ; 112(2): 1694-1706, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31629877

RESUMO

Rho GTPases play essential roles in various life activities. Rho GTPase-activating protein (RhoGAP) and Rho guanine nucleotide exchange factor (RhoGEF) are the main regulators of Rho GTPases. RhoGAP, RhoGEF and Rho make up a molecular switch and exert crucial roles in signaling pathways. The genome-wide studies can provide us a comprehensive information of special protein family, but the genome-wide information of RhoGAP and RhoGEF families are still lacking in the mammal lineage. Here, we report the correlations between mouse RhoGAPs and RhoGEFs in gene quantities, evolution, molecular function, and their expression levels in heart embryonic development and cardiovascular medicine treatment at genome-wide scale. Besides, we find that the 3D structures of RhoGAP domains between different species are highly conserved, but that of RhoGEF domains are variable between species. Our present study contributes to a better understanding of the complex regulation mechanisms of RhoGAP and RhoGEF families.


Assuntos
Evolução Molecular , Proteínas Ativadoras de GTPase/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Animais , Sequência Conservada , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Genoma , Camundongos , Miocárdio/metabolismo , Filogenia , Domínios Proteicos , Mapas de Interação de Proteínas , Fatores de Troca de Nucleotídeo Guanina Rho/química , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo
10.
Biochem Biophys Res Commun ; 503(3): 1703-1709, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30049439

RESUMO

Glutamate decarboxylase (GAD), which is a unique pyridoxal 5-phosphate (PLP)-dependent enzyme, can catalyze α-decarboxylation of l-glutamate (L-Glu) to γ-aminobutyrate (GABA). The crystal structure of GAD in complex with PLP from Lactobacillus brevis CGMCC 1306 was successfully solved by molecular-replacement, and refined at 2.2 Šresolution to an Rwork factor of 18.76% (Rfree = 23.08%). The coenzyme pyridoxal 5-phosphate (PLP) forms a Schiff base with the active-site residue Lys279 by continuous electron density map, which is critical for catalysis by PLP-dependent decarboxylase. Gel filtration showed that the active (pH 4.8) and inactive (pH 7.0) forms of GAD are all dimer. The residues (Ser126, Ser127, Cys168, Ile211, Ser276, His278 and Ser321) play important roles in anchoring PLP cofactor inside the active site and supporting its catalytic reactivity. The mutant T215A around the putative substrate pocket displayed an 1.6-fold improvement in catalytic efficiency (kcat/Km) compared to the wild-type enzyme (1.227 mM-1 S-1 versus 0.777 mM-1 S-1), which was the highest activity among all variants tested. The flexible loop (Tyr308-Glu312), which is positioned near the substrate-binding site, is involved in the catalytic reaction, and the conserved residue Tyr308 plays a vital role in decarboxylation of L-Glu.


Assuntos
Glutamato Descarboxilase/química , Glutamato Descarboxilase/metabolismo , Levilactobacillus brevis/enzimologia , Simulação de Acoplamento Molecular , Sequência de Aminoácidos , Cristalografia por Raios X , Glutamato Descarboxilase/genética , Mutagênese Sítio-Dirigida , Alinhamento de Sequência
12.
Biotechnol Biofuels ; 10: 235, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29046721

RESUMO

BACKGROUND: Bacillus licheniformis MW3 as a GRAS and thermophilic strain is a promising microorganism for chemical and biofuel production. However, its capacity to co-utilize glucose and xylose, the major sugars found in lignocellulosic biomass, is severely impaired by glucose-mediated carbon catabolite repression (CCR). In this study, a "dual-channel" process was implemented to engineer strain MW3 for simultaneous utilization of glucose and xylose, using l-lactic acid as a target product. RESULTS: A non-phosphotransferase system (PTS) glucose uptake route was activated via deletion of the glucose transporter gene ptsG and introduction of the galactose permease gene galP. After replacing the promoter of glucokinase gene glck with the strong promoter Pals, the engineered strain recovered glucose consumption and utilized glucose and xylose simultaneously. Meanwhile, to improve the consumption rate of xylose in this strain, several measures were undertaken, such as relieving the regulation of the xylose repressor XylR, reducing the catabolite-responsive element, and optimizing the rate-limiting step. Knockout of ethanol and acetic acid pathway genes further increased lactic acid yield by 6.2%. The resultant strain, RH15, was capable of producing 121.9 g/L l-lactic acid at high yield (95.3%) after 40 h of fermentation from a mixture of glucose and xylose. When a lignocellulosic hydrolysate was used as the substrate, 99.3 g/L l-lactic acid was produced within 40 h, with a specific productivity of 2.48 g/[L h] and a yield of 94.6%. CONCLUSIONS: Our engineered strain B. licheniformis RH15 could thermophilically produced l-lactic acid from lignocellulosic hydrolysate with relatively high concentration and productivity at levels that were competitive with most reported cases of l-lactic acid-producers. Thus, the engineered strain might be used as a platform for the production of other chemicals. In addition to engineering the B. licheniformis strain, the "dual-channel" process might serve as an alternative method for engineering a variety of other strains.

13.
Nat Commun ; 8(1): 695, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28947795

RESUMO

The Hippo tumor suppressor pathway is essential for development and tissue growth control, encompassing a core cassette consisting of the Hippo (MST1/2), Warts (LATS1/2), and Tricornered (NDR1/2) kinases together with MOB1 as an important signaling adaptor. However, it remains unclear which regulatory interactions between MOB1 and the different Hippo core kinases coordinate development, tissue growth, and tumor suppression. Here, we report the crystal structure of the MOB1/NDR2 complex and define key MOB1 residues mediating MOB1's differential binding to Hippo core kinases, thereby establishing MOB1 variants with selective loss-of-interaction. By studying these variants in human cancer cells and Drosophila, we uncovered that MOB1/Warts binding is essential for tumor suppression, tissue growth control, and development, while stable MOB1/Hippo binding is dispensable and MOB1/Trc binding alone is insufficient. Collectively, we decrypt molecularly, cell biologically, and genetically the importance of the diverse interactions of Hippo core kinases with the pivotal MOB1 signal transducer.The Hippo tumor suppressor pathway is essential for development and tissue growth control. Here the authors employ a multi-disciplinary approach to characterize the interactions of the three Hippo kinases with the signaling adaptor MOB1 and show how they differently affect development, tissue growth and tumor suppression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , MAP Quinase Quinase Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Geneticamente Modificados , Linhagem Celular , Linhagem Celular Tumoral , Drosophila melanogaster/genética , Via de Sinalização Hippo , Humanos , MAP Quinase Quinase Quinases/genética , Modelos Moleculares , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
14.
J Mol Cell Biol ; 8(5): 411-425, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26798146

RESUMO

TSC1 and TSC2 mutations account for the majority of tuberous sclerosis complex cases. The TSC1 and TSC2 proteins assemble into a complex that is stabilized by TBC1D7 through its direct interaction with the TSC1 coiled coil (CC) region. Loss of TBC1D7 is associated with intellectual disability and megalencephaly. Here, we determine the crystal structure of the complex between TBC1D7 and the C-terminal part (residues 939-992) of TSC1-CC. The structure reveals that two TSC1-CCs form a parallel homodimer, which results in the formation of two symmetric surfaces for interaction with TBC1D7. TBC1D7 employs its α4 and α5 helices to interact with the α1 helix of one TSC1 (939-992) molecule mainly through hydrophobic interactions, and simultaneously associates with the other TSC1 (939-992) molecule using the C-terminal tip of its α4 helix. Biochemical and cell biological data demonstrate that TBC1D7 indeed substantially stabilizes the homodimerization of TSC1-CC, and mutations to the critical interface residues greatly compromise this effect. Together, our data reveal the molecular mechanism underlying TBC1D7-mediated stabilization of TSC1 dimerization, and its contribution to the structural integrity of the holo-TSC complex.

15.
Cell Discov ; 2: 16051, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066558

RESUMO

The mTOR complex I (mTORC1) signaling pathway controls many metabolic processes and is regulated by amino acid signals, especially arginine. CASTOR1 has been identified as the cytosolic arginine sensor for the mTORC1 pathway, but the molecular mechanism of how it senses arginine is elusive. Here, by determining the crystal structure of human CASTOR1 in complex with arginine, we found that an exquisitely tailored pocket, carved between the NTD and the CTD domains of CASTOR1, is employed to recognize arginine. Mutation of critical residues in this pocket abolished or diminished arginine binding. By comparison with structurally similar aspartate kinases, a surface patch of CASTOR1-NTD on the opposite side of the arginine-binding site was identified to mediate direct physical interaction with its downstream effector GATOR2, via GATOR2 subunit Mios. Mutation of this surface patch disrupted CASTOR1's recognition and inhibition of GATOR2, revealed by in vitro pull-down assay. Normal mode (NM) analysis revealed an 'open'-to-'closed' conformational change for CASTOR1, which is correlated to the switching between the exposing and concealing of its GATOR2-binding residues, and is most likely related to arginine binding. Interestingly, the GATOR2-binding sites on the two protomers of CASTOR1 dimer face the same direction, which prompted us to propose a model for how dimerization of CASTOR1 relieves the inhibition of GATOR1 by GATOR2. Our study thus provides a thorough analysis on how CASTOR1 recognizes arginine, and describes a possible mechanism of how arginine binding induces the inter-domain movement of CASTOR1 to affect its association with GATOR2.

16.
Cell Discov ; 1: 15016, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27462415

RESUMO

The tumor suppressor APC employs its conserved armadillo repeat (ARM) domain to recognize many of its binding partners, including Amer1/WTX, which is mutated in Wilms' tumor and bone overgrowth syndrome. The APC-Amer1 complex has important roles in regulating Wnt signaling and cell adhesion. Three sites A1, A2, and A3 of Amer1 have been reported to mediate its interaction with APC-ARM. In this study, crystal structures of APC-ARM in complexes with Amer1-A1, -A2, and -A4, which is newly identified in this work, were determined. Combined with our GST pull-down, yeast two-hybrid, and isothermal titration calorimetry (ITC) assay results using mutants of APC and Amer1 interface residues, our structures demonstrate that Amer1-A1, -A2, and -A4, as well as other APC-binding proteins such as Asef and Sam68, all employ a common recognition pattern to associate with APC-ARM. In contrast, Amer1-A3 binds to the C-terminal side of APC-ARM through a bipartite interaction mode. Composite mutations on either APC or Amer1 disrupting all four interfaces abrogated their association in cultured cells and impaired the membrane recruitment of APC by Amer1. Our study thus comprehensively elucidated the recognition mechanism between APC and Amer1, and revealed a consensus recognition sequence employed by various APC-ARM binding partners.

17.
Arch Insect Biochem Physiol ; 84(2): 57-77, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23959953

RESUMO

Yeast Atg8 and mammalian microtubule-associated protein light chain 3 (LC3) are landmark proteins essential for autophagy. Here the lepidopteran Atg8, a homolog of LC3, is characterized. Sequence analysis reveals that Atg8 proteins are highly conserved in lepidopteran species. The abundance of endogeous Atg8 and the ratios of Atg8 conjugation to phosphatidylethanolamine (Atg8-PE)/Atg8 are different among several lepidopteran cell lines and different tissues of Helicoverpa armigera larvae. Both the density of fluorescent pre-autophagosomal structures with GFP-Ha Atg8 and the abundance of Atg6 are positively correlated with levels of Atg8-PE in different cell lines. The mutant GFP-Atg8(G116A) has lost the function in punctual formation, suggesting that G116 is important for autophagy. Exogenous factors have significant influences on the conversion of Atg8 in lepidopteran cells. Bacillus thuringiensis enhances the degradation of Atg8 in Spodoptera litura Sl-HP cells. Atg8-PE degrades gradually with extension of amino acid starvation, and bafilomycin A1 can block the decrease through the inhibition of autophagosome fusion with lysosome. Interestingly, high pH is more effective than amino acid starvation in Bombyx mori Bme cells to induce the conversion of BmAtg8 to BmAgt8-PE. Change of the quality of fetal bovine serum in the culture medium results in alteration of the ratio of Atg8-PE/Atg8 in some lepidopteran cell lines.


Assuntos
Autofagia/fisiologia , Proteínas de Insetos/genética , Mariposas/química , Mariposas/metabolismo , Sequência de Aminoácidos , Animais , Autofagia/efeitos dos fármacos , Bacillus thuringiensis , Linhagem Celular , Concentração de Íons de Hidrogênio , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Macrolídeos/farmacologia , Dados de Sequência Molecular , Mariposas/citologia , Fosfatidiletanolaminas/metabolismo , Filogenia , Inanição/metabolismo
18.
Cytotechnology ; 65(3): 425-35, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23070538

RESUMO

Development of insect resistance to Bacillus thuringiensis (Bt) toxins threatens the sustained successful application of Bt-based biological control tactics. Multi-mechanisms of resistance have been proposed, such as alteration of toxin-binding proteins, changes of proteases in midgut and so on. The other responses of the Cry1Ac-selected insects might also contribute to the evolution of resistance. Here, the Cry1Ac-selected Trichoplusia ni TnH5 cells with high resistance were subjected to analysis of proteome and the differentially expressed proteins were identified using mass spectrometry. The differential proteins included transporter, molecular chaperon, structural molecules and many other molecules involved in protein metabolism, signal transduction, nucleotide binding, lipid biosynthesis, carbohydrates metabolism and energy production, suggesting that a complex mechanisms involved in the development of insect resistance to Bt Cry1Ac toxins at cellular levels. The decrease of protein synthesis, changes of signal transduction, more rapid energy production, the enhanced lipid synthesis and the decline of possible Cry1Ac-binding proteins in cytoplasm and other events might contribute to the development of resistance in the selected cells. Our results provide some new cues for understanding the mechanism of Bt resistance.

19.
PLoS One ; 7(8): e40877, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952575

RESUMO

There are conflicting reports on the role of cytochrome c during insect apoptosis. Our previous studies have showed that cytochrome c released from the mitochondria was an early event by western blot analysis and caspase-3 activation was closely related to cytochrome c release during apoptosis induced by baculovirus in Spodoptera litura cells (Sl-1 cell line). In the present study, alteration in mitochondrial morphology was observed by transmission electron microscopy, and cytochrome c release from mitochondria in apoptotic Sl-1 cells induced with Anagrapha falcifera multiple nuclear polyhedrosis virus (AfMNPV) has further been confirmed by immunofluoresence staining protocol, suggesting that structural disruption of mitochondria and the release of cytochrome c are important events during Lepidoptera insect cell apoptosis. We also used Sl-1 cell-free extract system and the technique of RNA interference to further investigate the role of cytochrome c in apoptotic Sl-1 cells induced by AfMNPV. Caspase-3 activity in cell-free extracts supplemented with exogenous cytochrome c was determined and showed an increase with the extension of incubation time. DsRNA-mediated silencing of cytochrome c resulted in the inhibition of apoptosis and protected the cells from AfMNPV-induced cell death. Silencing of expression of cytochrome c had a remarkable effect on pro-caspase-3 and pro-caspase-9 activation and resulted in the reduction of caspase-3 and caspase-9 activity in Sl-1 cells undergoing apoptosis. Caspase-9 inhibitor could inhibit activation of pro-caspase-3, and the inhibition of the function of Apaf-1 with FSBA blocked apoptosis, hinting that Apaf-1 could be involved in Sl-1 cell apoptosis induced by AfMNPV. Taken together, these results strongly demonstrate that cytochrome c plays an important role in apoptotic signaling pathways in Lepidopteran insect cells.


Assuntos
Apoptose , Citocromos c/metabolismo , Nucleopoliedrovírus/metabolismo , Animais , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Sistema Livre de Células , Dactinomicina/farmacologia , Citometria de Fluxo/métodos , Inativação Gênica , Insetos , Microscopia de Fluorescência/métodos , Mitocôndrias/metabolismo , Interferência de RNA , RNA de Cadeia Dupla/metabolismo
20.
PLoS One ; 7(5): e37457, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22629397

RESUMO

Autophagy plays a central role in regulating important cellular functions such as cell survival during starvation and control of infectious pathogens. On the other hand, many pathogens have evolved mechanisms of inhibition of autophagy such as blockage of the formation of autophagosomes or the fusion of autophagosomes with lysosomes. Baculoviruses are important insect pathogens for pest control, and autophagy activity increases significantly during insect metamorphosis. However, it is not clear whether baculovirus infection has effects on the increased autophagy. In the present study, we investigated the effects of the Autographa californica nucleopolyhedrovirus (AcMNPV) infection on autophagy in SL-HP cell line from Spodoptera litura induced under amino acid deprivation. The results revealed that AcMNPV infection did not inhibit autophagy but triggered apoptosis under starvation pressure. In the early stage of infection under starvation, mitochondrial dysfunction was detected, suggesting the organelles might be involved in cell apoptosis. The semi-quantitative PCR assay revealed that the expression of both p35 and ie-1 genes of AcMNPV had no significant difference between the starved and unstarved SL-HP cells. The western blot analysis showed that no cleavage of endogenous Atg6 occurred during the process of apoptosis in SL-HP cells. These data demonstrated that some permissive insect cells may defend baculovirus infection via apoptosis under starvation and apoptosis is independent of the cleavage of Atg6 in SL-HP cells.


Assuntos
Aminoácidos/metabolismo , Apoptose , Autofagia , Nucleopoliedrovírus/fisiologia , Spodoptera/virologia , Animais , Linhagem Celular , Células Cultivadas , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...