Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 301: 153-62, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26348148

RESUMO

This work investigates the aerosols emitted during combustion of aircraft and naval structural composite materials (epoxy resin/carbon fibers and vinyl ester/glass fibers and carbon nanotubes). Combustion tests were performed at lab-scale using a modified cone calorimeter. The aerosols emitted have been characterized using various metrological devices devoted to the analysis of aerosols. The influence of the nature of polymer matrices, the incorporation of fibers and carbon nanotubes as well as glass reinforcements on the number concentration and the size distribution of airborne particles produced, was studied in the 5 nm-10 µm range. Incorporation of carbon fibers into epoxy resin significantly reduced the total particle number concentration. In addition, the interlaced orientation of carbon fibers limited the particles production compared to the composites with unidirectional one. The carbon nanotubes loading in vinyl ester resin composites influenced the total particles production during the flaming combustion with changes during kinetics emission. Predominant populations of airborne particles generated during combustion of all tested composites were characterized by a PN50 following by PN(100-500).

2.
J Chem Phys ; 138(9): 094203, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23485287

RESUMO

We studied the single photon ionization of gas phase adenine and cytosine by means of vacuum ultraviolet synchrotron radiation coupled to a velocity map imaging electron∕ion coincidence spectrometer. Both in-vacuum temperature-controlled oven and aerosol thermodesorption were successfully applied to promote the intact neutral biological species into the gas phase. The photoion yields are consistent with previous measurements. In addition, we deduced the threshold photoelectron spectra and the slow photoelectron spectra for both species, where the close to zero kinetic energy photoelectrons and the corresponding photoions are measured in coincidence. The photoionization close and above the ionization energies are found to occur mainly via direct processes. Both vaporization techniques lead to similar electronic spectra for the two molecules, which consist of broadbands due to the complex electronic structure of the cationic species and to the possible contribution of several neutral tautomers for cytosine prior to ionization. Accurate ionization energies are measured for adenine and cytosine at, respectively, 8.267 ± 0.005 eV and 8.66 ± 0.01 eV, and we deduce precise thermochemical data for the adenine radical cation. Finally, we performed an evaluation and a comparison of the two vaporization techniques addressing the following criteria: measurement precision, thermal fragmentation, sensitivity, and sample consumption. The aerosol thermodesorption technique appears as a promising alternative to vaporize large thermolabile biological compounds, where extended thermal decomposition or low sensitivity could be encountered when using a simple oven vaporization technique.


Assuntos
Adenina/química , Citosina/química , Gases/química , Raios Ultravioleta , Aerossóis/química , Processos Fotoquímicos , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...