Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 9(49): 43230-43238, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29168637

RESUMO

We report on the fabrication of a novel class of lightweight materials, polyimide-graphene nanocomposites (0.01-5 vol %), with tunable electrical conductivity. The graphene-polyimide nanocomposites exhibit an ultra-low graphene percolation threshold of 0.03 vol % and maximum dc conductivity of 0.94 S/cm, which we attribute to excellent dispersion, extraordinary electron transport in the well-dispersed graphene, high number density of graphene nanosheets, and the π-π interactions between the aromatic moieties of the polyimide and the carbon rings in graphene. The dc conductivity data are shown to follow the power-law dependence on the graphene volume fraction near the percolation threshold. The ac conductivity of the nanocomposites is accurately represented by the extended pair-approximation model. The exponent s of the approximation is estimated to be 0.45-0.61, indicating anomalous diffusion of charge particles and a fractal structure for the conducting phase, lending support to the percolation model. Low-temperature dc conductivity of the nanocomposites is well-approximated by the thermal fluctuation-induced tunneling. Wide-angle X-ray scattering and transmission electron microscopy were utilized to correlate the morphology with the electrical conductivity. The lack of maxima in X-ray indicates the loss of structural registry and short-range ordering.

2.
ACS Nano ; 4(12): 7211-20, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21082818

RESUMO

Graphene nanosheet-bisphenol A polycarbonate nanocomposites (0.027-2.2 vol %) prepared by both emulsion mixing and solution blending methods, followed by compression molding at 287 °C, exhibited dc electrical percolation threshold of ∼0.14 and ∼0.38 vol %, respectively. The conductivities of 2.2 vol % graphene nanocomposites were 0.512 and 0.226 S/cm for emulsion and solution mixing. The 1.1 and 2.2 vol % graphene nanocomposites exhibited frequency-independent behavior. Inherent conductivity, extremely high aspect ratio, and nanostructure directed assembly of the graphene using PC nanospheres are the main factors for excellent electrical properties of the nanocomposites. Dynamic tensile moduli of nanocomposites increased with increasing graphene in the nanocomposite. The glass transition temperatures were decreased with increasing graphene for the emulsion series. High-resolution electron microscopy (HR-TEM) and small-angle neutron scattering (SANS) showed isolated graphene with no connectivity path for insulating nanocomposites and connected nanoparticles for the conductive nanocomposites. A stacked disk model was used to obtain the average particle radius, average number of graphene layers per stack, and stack spacing by simulation of the experimental SANS data. Morphology studies indicated the presence of well-dispersed graphene and small graphene stacking with infusion of polycarbonate within the stacks.

3.
ACS Appl Mater Interfaces ; 2(3): 669-76, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20356267

RESUMO

Molecular pi-complexes were formed from pristine HiPCO single- wall carbon nanotubes (SWCNTs) and 1-pyrene- N-(4-N'-(5-norbornene-2,3-dicarboxyimido)phenyl butanamide, 1. Polyimide films were prepared with these complexes as well as uncomplexed SWCNTs and the effects of nanoadditive addition on mechanical, thermal, and electrical properties of these films were evaluated. Although these properties were enhanced by both nanoadditives, larger increases in tensile strength and thermal and electrical conductivities were obtained when the SWCNT/1 complexes were used. At a loading level of 5.5 wt %, the T(g) of the polyimide increased from 169 to 197 degrees C and the storage modulus increased 20-fold (from 142 to 3045 MPa). The addition of 3.5 wt % SWCNT/1 complexes increased the tensile strength of the polyimide from 61.4 to 129 MPa; higher loading levels led to embrittlement and lower tensile strengths. The electrical conductivities (DC surface) of the polyimides increased to 1 x 10(-4) Scm(-1) (SWCNT/1 complexes loading level of 9 wt %). Details of the preparation of these complexes and their effects on polyimide film properties are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...