Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 3(6): e1700314, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28691098

RESUMO

Little is known about the bioavailability of iron (Fe) in natural dusts and the impact of dust mineralogy on Fe utilization by photosynthetic organisms. Variation in the supply of bioavailable Fe to the ocean has the potential to influence the global carbon cycle by modulating primary production in the Southern Ocean. Much of the dust deposited across the Southern Ocean is sourced from South America, particularly Patagonia, where the waxing and waning of past and present glaciers generate fresh glaciogenic material that contrasts with aged and chemically weathered nonglaciogenic sediments. We show that these two potential sources of modern-day dust are mineralogically distinct, where glaciogenic dust sources contain mostly Fe(II)-rich primary silicate minerals, and nearby nonglaciogenic dust sources contain mostly Fe(III)-rich oxyhydroxide and Fe(III) silicate weathering products. In laboratory culture experiments, Phaeodactylum tricornutum, a well-studied coastal model diatom, grows more rapidly, and with higher photosynthetic efficiency, with input of glaciogenic particulates compared to that of nonglaciogenic particulates due to these differences in Fe mineralogy. Monod nutrient accessibility models fit to our data suggest that particulate Fe(II) content, rather than abiotic solubility, controls the Fe bioavailability in our Fe fertilization experiments. Thus, it is possible for this diatom to access particulate Fe in dusts by another mechanism besides uptake of unchelated Fe (Fe') dissolved from particles into the bulk solution. If this capability is widespread in the Southern Ocean, then dusts deposited to the Southern Ocean in cold glacial periods are likely more bioavailable than those deposited in warm interglacial periods.


Assuntos
Diatomáceas , Poeira/análise , Compostos Ferrosos/química , Camada de Gelo/química , Material Particulado/análise , Geografia , Sedimentos Geológicos/química , Ferro/química
2.
Talanta ; 128: 248-53, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25059156

RESUMO

Iron is an essential micronutrient for phytoplankton growth and is supplied to the remote areas of the ocean mainly through atmospheric dust/ash. The amount of soluble Fe in dust/ash is a major source of uncertainty in modeling-Fe dissolution and deposition to the surface ocean. Currently in the literature, there exist almost as many different methods to estimate fractional solubility as researchers in the field, making it difficult to compare results between research groups. Also, an important constraint to evaluate Fe solubility in atmospheric dust is the limited mass of sample which is usually only available in micrograms to milligrams amounts. A continuous flow (CF) method that can be run with low mass of sediments (<10mg) was tested against a standard method which require about 1g of sediments (BCR of the European Union). For validation of the CF experiment, we run both methods using South American surface sediment and deposited volcanic ash. Both materials tested are easy eroded by wind and are representative of atmospheric dust/ash exported from this region. The uncertainty of the CF method was obtained from seven replicates of one surface sediment sample, and shows very good reproducibility. The replication was conducted on different days in a span of two years and ranged between 8 and 22% (i.e., the uncertainty for the standard method was 6-19%). Compared to other standardized methods, the CF method allows studies of dissolution kinetic of metals and consumes less reagents and time (<3h). The method validated here is suggested to be used as a standardized method for Fe solubility studies on dust/ash.


Assuntos
Técnicas de Química Analítica/métodos , Poeira/análise , Ferro/análise , Erupções Vulcânicas/análise , Atmosfera/análise , Atmosfera/química , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Ferro/química , Ferro/isolamento & purificação , Reprodutibilidade dos Testes , Solo/química , Solubilidade , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...