Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 110: 62-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24880600

RESUMO

We investigated the capacity of a consortium of ascomycetous strains, Doratomyces nanus, Doratomyces purpureofuscus, Doratomyces verrucisporus, Myceliophthora thermophila, Phoma eupyrena and Thermoascus crustaceus in the mycoremediation of historically contaminated soil and sediment by polychlorinated biphenyls (PCBs). Analyses of 15 PCB concentrations in three mesocosms containing soil from which the fungal strains had previously been isolated, revealed significant PCB depletions of 16.9% for the 6 indicator PCBs (i-PCBs) and 18.7% for the total 15 PCBs analyzed after 6months treatment. The degradation rate did not statistically vary whether the soil had been treated with non-inoculated straw or colonized straw or without straw and inoculated with the consortium of the six strains. Concerning the sediment, we evidenced significant depletions of 31.8% for the 6 i-PCBs and 33.3% for the 15 PCB congeners. The PCB depletions affected most of the 15 PCBs analyzed without preference for lower chlorinated congeners. Bioaugmented strains were evidenced in different mesocosms, but their reintroduction, after six months treatment, did not improve the rate of PCB degradation, suggesting that the biodegradation could affect the bioavailable PCB fraction. Our results demonstrate that the ascomycetous strains potentially adapted to PCBs may be propitious to the remediation of PCB contaminated sites.


Assuntos
Ascomicetos/metabolismo , Bifenilos Policlorados/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Halogenação , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...