Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675348

RESUMO

Axial resolution is one of the most important characteristics of a microscope. In all microscopes, a high axial resolution is desired in order to discriminate information efficiently along the longitudinal direction. However, when studying thick samples that do not contain laterally overlapping information, a low axial resolution is desirable, as information from multiple planes can be recorded simultaneously from a single camera shot instead of plane-by-plane mechanical refocusing. In this study, we increased the focal depth of an infrared microscope non-invasively by introducing a binary axicon fabricated on a barium fluoride substrate close to the sample. Preliminary results of imaging the thick and sparse silk fibers showed an improved focal depth with a slight decrease in lateral resolution and an increase in background noise.

2.
Nanomaterials (Basel) ; 14(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38334558

RESUMO

Emerging applications of optical technologies are driving the development of miniaturised light sources, which in turn require the fabrication of matching micro-optical elements with sub-1 mm cross-sections and high optical quality. This is particularly challenging for spatially constrained biomedical applications where reduced dimensionality is required, such as endoscopy, optogenetics, or optical implants. Planarisation of a lens by the Fresnel lens approach was adapted for a conical lens (axicon) and was made by direct femtosecond 780 nm/100 fs laser writing in the SZ2080™ polymer with a photo-initiator. Optical characterisation of the positive and negative fraxicons is presented. Numerical modelling of fraxicon optical performance under illumination by incoherent and spatially extended light sources is compared with the ideal case of plane-wave illumination. Considering the potential for rapid replication in soft polymers and resists, this approach holds great promise for the most demanding technological applications.

3.
Opt Lett ; 48(21): 5775-5778, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910756

RESUMO

The 3D laser printing of form birefringent structures promises fast prototyping of polarization-sensitive photonic elements. However, achieving the quarter- and half-wave phase retardation levels needed in applications still remains a challenge, especially at visible wavelengths. Thickness of the birefringent region, usually consisting of simple 1D gratings, must be sufficiently large to ensure the required retardance, making the 3D laser-printed gratings prone to mechanical collapse. Here we demonstrate 3D laser-printed mechanically robust form birefringent 3D structures whose thickness and phase retardation can be increased without loss of mechanical stability, and report on the realization of compact self-supporting structures exhibiting quarter- and half-wave phase retardation at visible wavelengths.

4.
Nanomaterials (Basel) ; 13(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37630866

RESUMO

The increasing demand for optics quality requires the lowest optical power loss, which can occur from unwanted reflections. Laser direct writing (LDW) allows for the fabrication of complex structures, which is particularly advantageous in micro-optic applications. This research demonstrates the possibility of forming an anti-reflective coating on hybrid polymer micro-lenses fabricated by employing LDW without changing their geometry. Such coating deposited via atomic layer deposition (ALD) decreased the reflection from 3.3% to 0.1% at a wavelength of 633 nm for one surface of hybrid organic-inorganic SZ2080™ material. This research validates the compatibility of ALD with LDW 3D multiphoton lithography synergistically, expanding its applications on optical grade sub-100 µm scale micro-optics.

5.
Micromachines (Basel) ; 14(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37421030

RESUMO

Microlens arrays (MLAs) which are increasingly popular micro-optical elements in compact integrated optical systems were fabricated using a femtosecond direct laser write (fs-DLW) technique in the low-shrinkage SZ2080TM photoresist. High-fidelity definition of 3D surfaces on IR transparent CaF2 substrates allowed to achieve ∼50% transmittance in the chemical fingerprinting spectral region 2-5 µm wavelengths since MLAs were only ∼10 µm high corresponding to the numerical aperture of 0.3 (the lens height is comparable with the IR wavelength). To combine diffractive and refractive capabilities in miniaturised optical setup, a graphene oxide (GO) grating acting as a linear polariser was also fabricated by fs-DLW by ablation of a 1 µm-thick GO thin film. Such an ultra-thin GO polariser can be integrated with the fabricated MLA to add dispersion control at the focal plane. Pairs of MLAs and GO polarisers were characterised throughout the visible-IR spectral window and numerical modelling was used to simulate their performance. A good match between the experimental results of MLA focusing and simulations was achieved.

6.
Nanomaterials (Basel) ; 14(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38202503

RESUMO

The goal and essential parameter of laser light conversion is achieving emitted radiation of higher brightness. For many applications, the laser beam must have the highest available beam quality and highest achievable power. However, lasers with higher average power values usually have poorer beam quality, limiting the achievable brightness. Here, we present a method for improving the beam quality by using a spatially structured optical pump for a membrane external cavity laser resonator. An increase in brightness is achieved under fixed focusing conditions just by changing the pump intensity profile. A controllable output laser mode can be achieved by using a dynamically changing pump pattern.

7.
Micromachines (Basel) ; 14(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36677068

RESUMO

Transparent and high-hardness materials have become the object of wide interest due to their optical and mechanical properties; most notably, concerning technical glasses and crystals. A notable example is sapphire-one of the most rigid materials having impressive mechanical stability, high melting point and a wide transparency window reaching into the UV range, together with impressive laser-induced damage thresholds. Nonetheless, using this material for 3D micro-fabrication is not straightforward due to its brittle nature. On the microscale, selective laser etching (SLE) technology is an appropriate approach for such media. Therefore, we present our research on C-cut crystalline sapphire microprocessing by using femtosecond radiation-induced SLE. Here, we demonstrate a comparison between different wavelength radiation (1030 nm, 515 nm, 343 nm) usage for material modification and various etchants (hydrofluoric acid, sodium hydroxide, potassium hydroxide and sulphuric and phosphoric acid mixture) comparison. Due to the inability to etch crystalline sapphire, regular SLE etchants, such as hydrofluoric acid or potassium hydroxide, have limited adoption in sapphire selective laser etching. Meanwhile, a 78% sulphuric and 22% phosphoric acid mixture at 270 °C temperature is a good alternative for this process. We present the changes in the material after the separate processing steps. After comparing different processing protocols, the perspective is demonstrated for sapphire structure formation.

8.
Opt Express ; 28(19): 27850-27864, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32988069

RESUMO

Optical aberrations are a type of optical defect of imaging systems that hinder femtosecond direct laser write machining by changing voxel size and aspect ratio in different sample depths. We present an approach of compensating such aberrations using a liquid crystal spatial light modulator (SLM). Two methods for correcting are explored. They are based on backward ray tracing and Zernike polynomials. Experiments with a long focal distance lens (F = 25 and 50 mm) and microscope objective (100x, 0.9 NA) have been conducted. Specifically, aberration-free structuring with voxels of a constant aspect ratio of 1-1.5 is carried out throughout a 1 mm thick sample. Results show potential in simplifying direct laser writing and enabling new architectures made possible by near-spherical voxels.

9.
Opt Express ; 28(11): 16012-16026, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549433

RESUMO

The self-organised conical needles produced by plasma etching of silicon (Si), known as black silicon (b-Si), create a form-birefringent surface texture when etching of Si orientated at angles of θi < 50 - 70° (angle between the Si surface and vertical plasma E-field). The height of the needles in the form-birefringent region following 15 min etching was d ∼ 200 nm and had a 100 µm width of the optical retardance/birefringence, characterised using polariscopy. The height of the b-Si needles corresponds closely to the skin-depth of Si ∼λ/4 for the visible spectral range. Reflection-type polariscope with a voltage-controlled liquid-crystal retarder is proposed to directly measure the retardance Δn × d/λ ≈ 0.15 of the region with tilted b-Si needles. The quantified form birefringence of Δn = -0.45 over λ = 400 - 700 nm spectral window was obtained. Such high values of Δn at visible wavelengths can only be observed in the most birefringence calcite or barium borate as well as in liquid crystals. The replication of b-Si into Ni-shim with high fidelity was also demonstrated and can be used for imprinting of the b-Si nanopattern into other materials.

10.
Nanomaterials (Basel) ; 10(3)2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106560

RESUMO

A broadband graphene-on-Si3N4-membrane photodetector for the visible-IR spectral range is realised by simple lithography and deposition techniques. Photo-current is produced upon illumination due to presence of the build-in potential between dissimilar metal electrodes on graphene as a result of charge transfer. The sensitivity of the photo-detector is ∼ 1 . 1 µ A/W when irradiated with 515 and 1030 nm wavelengths; a smaller separation between the metal contacts favors gradient formation of the built-in electric field and increases the efficiency of charge separation. This optically-thin graphene-on-membrane photodetector and its interdigitated counterpart has the potential to be used within 3D optical elements, such as photonic crystals, sensors, and wearable electronics applications where there is a need to minimise optical losses introduced by the detector.

11.
Opt Lett ; 45(4): 980, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32058522

RESUMO

This publisher's note contains corrections to Opt. Lett.45, 13 (2020).OPLEDP0146-959210.1364/OL.45.000013.

12.
Opt Lett ; 44(20): 4969-4972, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31613241

RESUMO

We propose and experimentally demonstrate femtosecond direct laser writing with Bessel beams for the fabrication of photonic crystals with spatial filtering functionality. Such filters are mechanically stable, of small (of the order of a millimeter) size, do not require direct access to the far-field domain, and therefore are excellent candidates for intracavity spatial filtering applications in minilasers and microlasers. The proposed technique allows the fabrication of photonic crystal filters in inorganic glass, with a narrow angle (∼1°) nearly 100%-transmission passband between a broad angle (∼10°) nearly 0%-transmission angular stopbands.

13.
Opt Express ; 27(11): 15205-15221, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31163720

RESUMO

3D meso scale structures that can reach up to centimeters in overall size but retain micro- or nano-features, proved to be promising in various science fields ranging from micro-mechanical metamaterials to photonics and bio-medical scaffolds. In this work, we present synchronization of the linear and galvanometric scanners for efficient femtosecond 3D optical printing of objects at the meso-scale (from sub-µm to sub-cm spanning five orders of magnitude). In such configuration, the linear stages provide stitch-free structuring at nearly limitless (up to tens-of-cm) working area, while galvo-scanners allow to achieve translation velocities in the range of mm/s-cm/s without sacrificing nano-scale positioning accuracy and preserving the undistorted shape of the final print. The principle behind this approach is demonstrated, proving its inherent advantages in comparison to separate use of only linear stages or scanners. The printing rate is calculated in terms of voxels/s, showcasing the capability to maintain an optimal feature size while increasing throughput. Full capabilities of this approach are demonstrated by fabricating structures that reach millimeters in size but still retain sub-µm features: scaffolds for cell growth, microlenses, and photonic crystals. All this is combined into a benchmark structure: a meso-butterfly. Provided results show that synchronization of two scan modes is crucial for the end goal of industrial-scale implementation of this technology and makes the laser printing well aligned with similar approaches in nanofabrication by electron and ion beams.

14.
Materials (Basel) ; 10(1)2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-28772389

RESUMO

We introduce optically clear and resilient free-form micro-optical components of pure (non-photosensitized) organic-inorganic SZ2080 material made by femtosecond 3D laser lithography (3DLL). This is advantageous for rapid printing of 3D micro-/nano-optics, including their integration directly onto optical fibers. A systematic study of the fabrication peculiarities and quality of resultant structures is performed. Comparison of microlens resiliency to continuous wave (CW) and femtosecond pulsed exposure is determined. Experimental results prove that pure SZ2080 is ∼20 fold more resistant to high irradiance as compared with standard lithographic material (SU8) and can sustain up to 1.91 GW/cm² intensity. 3DLL is a promising manufacturing approach for high-intensity micro-optics for emerging fields in astro-photonics and atto-second pulse generation. Additionally, pyrolysis is employed to homogeneously shrink structures up to 40% by removing organic SZ2080 constituents. This opens a promising route towards downscaling photonic lattices and the creation of mechanically robust glass-ceramic microstructures.

15.
Sci Rep ; 6: 34173, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27683066

RESUMO

The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the "photonic crystal microchip laser", a very compact and efficient light source emitting high spatial quality high brightness radiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...