Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioelectromagnetics ; 37(5): 298-309, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27121268

RESUMO

For the first time, response of personal exposimeters (PEMs) is studied under diffuse field exposure in indoor environments. To this aim, both numerical simulations, using finite-difference time-domain method, and calibration measurements were performed in the range of 880-5875 MHz covering 10 frequency bands in Belgium. Two PEMs were mounted on the body of a human male subject and calibrated on-body in an anechoic chamber (non-diffuse) and a reverberation chamber (RC) (diffuse fields). This was motivated by the fact that electromagnetic waves in indoor environments have both specular and diffuse components. Both calibrations show that PEMs underestimate actual incident electromagnetic fields. This can be compensated by using an on-body response. Moreover, it is shown that these responses are different in anechoic chamber and RC. Therefore, it is advised to use an on-body calibration in an RC in future indoor PEM measurements where diffuse fields are present. Using the response averaged over two PEMs reduced measurement uncertainty compared to single PEMs. Following the calibration, measurements in a realistic indoor environment were done for wireless fidelity (WiFi-5G) band. Measured power density values are maximally 8.9 mW/m(2) and 165.8 µW/m(2) on average. These satisfy reference levels issued by the International Commission on Non-Ionizing Radiation Protection in 1998. Power density values obtained by applying on-body calibration in RC are higher than values obtained from no body calibration (only PEMs) and on-body calibration in anechoic room, by factors of 7.55 and 2.21, respectively. Bioelectromagnetics. 37:298-309, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Meio Ambiente , Monitoramento de Radiação/métodos , Ondas de Rádio , Calibragem , Difusão , Humanos , Masculino , Modelos Teóricos , Monitoramento de Radiação/instrumentação
2.
Bioelectromagnetics ; 34(2): 122-32, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22926824

RESUMO

Experimentally assessing the whole-body specific absorption rate (SAR(wb) ) in a complex indoor environment is very challenging. An experimental method based on room electromagnetics theory (accounting only the line-of-sight as specular path) is validated using numerical simulations with the finite-difference time-domain method. Furthermore, the method accounts for diffuse multipath components (DMC) in the total absorption rate by considering the reverberation time of the investigated room, which describes all the losses in a complex indoor environment. The advantage of the proposed method is that it allows discarding the computational burden because it does not use any discretizations. Results show good agreement between measurement and computation at 2.8 GHz, as long as the plane wave assumption is valid, that is, at large distances from the transmitter. Relative deviations of 0.71% and 4% have been obtained for far-field scenarios, and 77.5% for the near field-scenario. The contribution of the DMC in the total absorption rate is also quantified here, which has never been investigated before. It is found that the DMC may represent an important part of the total absorption rate; its contribution may reach up to 90% for certain scenarios in an indoor environment.


Assuntos
Fenômenos Eletromagnéticos , Doses de Radiação , Irradiação Corporal Total/métodos , Absorção , Simulação por Computador , Humanos , Imagens de Fantasmas , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...