Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 711: 135055, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31810669

RESUMO

Wood burning is widely used for domestic heating and has been identified as a ubiquitous pollution source in urban areas, especially during cold months. The present study is based on a three and a half winter months field campaign in the Paris region measuring Volatile Organic Compounds (VOCs) by Proton Transfer Reaction Mass Spectrometry (PTR-MS) in addition to Black Carbon (BC). Several VOCs were identified as strongly wood burning-influenced (e.g., acetic acid, furfural), or traffic-influenced (e.g., toluene, C8-aromatics). Methylbutenone, benzenediol and butandione were identified for the first time as wood burning-related in ambient air. A Positive Matrix Factorization (PMF) analysis highlighted that wood burning is the most important source of VOCs during the winter season. (47%). Traffic was found to account for about 22% of the measured VOCs during the same period, whereas solvent use plus background accounted altogether for the remaining fraction. The comparison with the regional emission inventory showed good consistency for benzene and xylenes but revisions of the inventory should be considered for several VOCs such as acetic acid, C9-aromatics and methanol. Finally, complementary measurements acquired simultaneously at other sites in Île-de-France (the Paris region) enabled evaluation of spatial variabilities. The influence of traffic emissions on investigated pollutants displayed a clear negative gradient from roadside to suburban stations, whereas wood burning pollution was found to be fairly homogeneous over the region.

2.
J Phys Chem A ; 116(41): 10135-42, 2012 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23004348

RESUMO

Rate constants for the gas-phase reactions of the NO(3) radical with a series of unsaturated aldehydes, trans-2-hexenal, trans-2-heptenal, and trans-2-octenal, have been measured using absolute rate method at 294 ± 3 K and atmospheric pressure. This work was performed to clarify discrepancies found in the literature and thus led to a clearer view of the effect of the increasing carbon chain length on the reactivity of trans-2-alkenals. The rate constants were determined to be (4.7 ± 1.5) × 10(-15), (5.3 ± 1.6) × 10(-15), and (5.6 ± 2.3) × 10(-15) cm(3) molecule(-1) s(-1) for trans-2-hexenal, trans-2-heptenal, and trans-2-octenal, respectively. These results clearly indicate that the carbon chain lengthening of the trans-2-alkenals does not significantly affect the rate constant. In addition, the mechanism for the reaction of NO(3) with these unsaturated aldehydes was also investigated. Unsaturated peroxynitrate-type compounds that are exclusively formed through the abstraction channel were observed as the main products.


Assuntos
Aldeídos/química , Nitratos/química , Radicais Livres/química , Gases/química , Cinética , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...