Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(7)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34361236

RESUMO

The surface functionalization of electrospun nanofibers allows for the introduction of additional functionalities while at the same time retaining the membrane properties of high porosity and surface-to-volume ratio. In this work, we sequentially deposited layers of chitosan and alginate to form a polyelectrolyte complex via layer-by-layer assembly on PLGA nanofibers to introduce pH-responsiveness for the controlled release of ibuprofen. The deposition of the polysaccharides on the surface of the fibers was revealed using spectroscopy techniques and ζ-potential measurements. The presence of polycationic chitosan resulted in a positive surface charge (16.2 ± 4.2 mV, pH 3.0) directly regulating the interactions between a model drug (ibuprofen) loaded within the polyelectrolyte complex and the layer-by-layer coating. The release of ibuprofen was slowed down in acidic pH (1.0) compared to neutral pH as a result of the interactions between the drug and the coating. The provided mesh acts as a promising candidate for the design of drug delivery systems required to bypass the acidic environment of the digestive tract.

2.
Molecules ; 25(24)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352685

RESUMO

The concept of depositing solid films on low-vapor pressure liquids is introduced and developed into a top-down approach to functionalize surfaces by attaching liquid polyethylene glycol (PEG). Solid-liquid gradients were formed by low-pressure plasma treatment yielding cross-linking and/or deposition of a plasma polymer film subsequently bound to a flexible polydimethylsiloxane (PDMS) backing. The analysis via optical transmission spectroscopy (OTS), optical, confocal laser scanning (CLSM) and scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) as well as by water contact angle (WCA) measurements revealed correlations between optical appearance, chemical composition and surface properties of the resulting water absorbing, covalently bound PEG-functionalized surfaces. Requirements for plasma polymer film deposition on low-vapor pressure liquids and effective surface functionalization are defined. Namely, the thickness of the liquid PEG substrate was a crucial parameter for successful film growth and covalent attachment of PEG. The presented method is a practicable approach for the production of functional surfaces featuring long-lasting strong hydrophilic properties, making them predestined for non-fouling or low-friction applications.


Assuntos
Plasma/química , Interações Hidrofóbicas e Hidrofílicas , Microscopia Confocal/métodos , Microscopia Eletrônica de Varredura/métodos , Espectroscopia Fotoeletrônica/métodos , Polietilenoglicóis/química , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Propriedades de Superfície , Pressão de Vapor
3.
Phys Chem Chem Phys ; 21(17): 8698-8708, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30989155

RESUMO

Since the earliest days of this field there has been an interest in correlating the structure of plasma polymer (PP) coatings with deposition parameters, most particularly with energy input per monomer molecule, Em. Both of our laboratories have developed methods for measuring Em (or somewhat equivalent, the apparent activation energy, Ea) in low- (LP) and atmospheric-pressure (AP) electrical discharge plasmas. We recently proposed a new parameter, energy conversion efficiency (ECE), which for the first time permits direct comparison of LP and AP experiments. Here, we report the case of small hydrocarbons, namely acetylene, ethylene and methane. "Critical" Em (or Ea) values that demarcate ECE regimes separating different reaction mechanisms are found to agree remarkably well, and to correlate with specific reaction mechanisms, including dissociation, recombination, gas-phase oligomerization, and surface processes.

4.
J Vis Exp ; (98)2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25938699

RESUMO

This movie shows how an atmospheric pressure plasma torch can be ignited by microwave power with no additional igniters. After ignition of the plasma, a stable and continuous operation of the plasma is possible and the plasma torch can be used for many different applications. On one hand, the hot (3,600 K gas temperature) plasma can be used for chemical processes and on the other hand the cold afterglow (temperatures down to almost RT) can be applied for surface processes. For example chemical syntheses are interesting volume processes. Here the microwave plasma torch can be used for the decomposition of waste gases which are harmful and contribute to the global warming but are needed as etching gases in growing industry sectors like the semiconductor branch. Another application is the dissociation of CO2. Surplus electrical energy from renewable energy sources can be used to dissociate CO2 to CO and O2. The CO can be further processed to gaseous or liquid higher hydrocarbons thereby providing chemical storage of the energy, synthetic fuels or platform chemicals for the chemical industry. Applications of the afterglow of the plasma torch are the treatment of surfaces to increase the adhesion of lacquer, glue or paint, and the sterilization or decontamination of different kind of surfaces. The movie will explain how to ignite the plasma solely by microwave power without any additional igniters, e.g., electric sparks. The microwave plasma torch is based on a combination of two resonators - a coaxial one which provides the ignition of the plasma and a cylindrical one which guarantees a continuous and stable operation of the plasma after ignition. The plasma can be operated in a long microwave transparent tube for volume processes or shaped by orifices for surface treatment purposes.


Assuntos
Micro-Ondas , Gases em Plasma/química , Pressão Atmosférica , Gases , Semicondutores , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...