Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 109(10): 4554-60, 2005 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16851532

RESUMO

In this work, we use first principles simulations to provide features of the dynamic scanning force microscopy imaging of adsorbed organic layers on insulating surfaces. We consider monolayers of formic (HCOOH) and acetic (CH(3)COOH) acid and a mixed layer of acetic and trifluoroacetic acids (CF(3)COOH) on the TiO(2)(110) surface and study their interaction with a silicon dangling bond tip. The results demonstrate that the silicon tip interacts more strongly with the substrate and the COO(-) group than the adsorbed acid headgroups, and, therefore, molecules would appear dark in images. The pattern of contrast and apparent height of molecules is determined by the repulsion between the tip and the molecular headgroups and by significant deformation of the monolayer and individual molecules. The height of the molecule on the surface and the size of the headgroup play a large role in determining access of the tip to the substrate and, hence, the contrast in images. Direct imaging of the molecules themselves could be obtained by providing a functionalized tip with attraction to the molecular headgroups, for example, a positive potential tip.

2.
Phys Rev Lett ; 92(3): 036101, 2004 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-14753889

RESUMO

We use first principles density functional theory calculations to study the interaction of a model dangling bond silicon tip with the surfaces of CaF2, Al2O3, TiO2, and MgO. In each case the strongest interaction is with the highest anions in the surface. We show that this is due to the onset of chemical bonding with the surface anions, which can be controlled by an electric field across the system. Combining our results and previous studies on semiconductor surfaces suggests that using dangling bond Si tips can provide immediate identification of surface species in atomically resolved noncontact atomic force microscopy and facilitate selective measurements of short-range interactions with surface sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...