Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(2)2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36830685

RESUMO

Cadmium (Cd) is a toxic and carcinogenic substance that is present in the natural environment. The underlying biomolecular mechanisms of Cd toxicity are not completely understood, and it continues to be a significant research target due to its impact on public health. The primary routes of exposure are through ingestion of contaminated food and water and inhalation. Cd's long biological half-life of 10-30 years allows it to accumulate in the body, leading to organ dysfunction notably in the kidney, liver, bone, and lungs. Cd has similar biochemical characteristics to Zinc (Zn). It shares the import transporters, ZIP8 and ZIP14, to enter the cells. This competitive behavior can be observed in multiple instances throughout the progression of Cd toxicity. Future studies on the biochemical interactions of Cd and Zn will elucidate the potential protective effects of Zn supplementation in reducing the effects of Cd toxicity. In addition, research can be focused on discovering key proteins and effective pathways for Cd elimination that confer fewer adverse effects than current antioxidant therapies.


Assuntos
Cádmio , Zinco , Cádmio/toxicidade , Zinco/metabolismo , Proteínas/metabolismo , Pulmão/metabolismo , Fígado/metabolismo
2.
Front Pharmacol ; 13: 980723, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263130

RESUMO

Background: Critically ill patients on supplemental oxygen therapy eventually develop acute lung injury (ALI). Reactive oxygen species (ROS) produced during ALI perturbs the mitochondrial dynamics resulting in cellular damage. Genetic deletion of the mitochondrial A-kinase anchoring protein 1 (Akap1) in mice resulted in mitochondrial damage, Endoplasmic reticulum (ER) stress, increased expression of mitophagy proteins and pro-inflammatory cytokines, exacerbating hyperoxia-induced Acute Lung Injury (HALI). Objective: Despite a strong causal link between mitochondrial dysfunction and HALI, the mechanisms governing the disease progression at the transcriptome level is unknown. Methods: In this study, RNA sequencing (RNA-seq) analysis was carried out using the lungs of Akap1 knockout (Akap1 -/-) mice exposed to normoxia or 48 h of hyperoxia followed by quantitative real time PCR and Ingenuity pathway analysis (IPA). Western blot analysis assessed mitochondrial dysfunction, OXPHOS complex (I-V), apoptosis and antioxidant proteins. Mitochondrial enzymatic assays was used to measure the aconitase, fumarase, citrate synthase activities in isolated mitochondria from Akap1 -/- vs. Wt mice exposed to hyperoxia. Results: Transcriptome analysis of Akap1 -/- exposed to hyperoxia reveals increases in transcripts encoding electron transport chain (ETC) and tricarboxylic acid cycle (TCA) proteins. Ingenuity pathway analysis (IPA) shows enrichment of mitochondrial dysfunction and oxidative phosphorylation in Akap1 -/- mice. Loss of AKAP1, coupled with oxidant injury, significantly decreases the activities of TCA enzymes. Mechanistically, a significant loss of dynamin-related protein 1 (Drp1) phosphorylation at the protein kinase A (PKA) site Serine 637 (Ser637), decreases in Akt phosphorylation at Serine 437 (Ser47) and increase in the expression of pro-apoptotic protein Bax indicate mitochondrial dysfunction. Heme oxygenase-1 (HO-1) levels significantly increased in CD68 positive alveolar macrophages in Akap1 -/- lungs, suggesting a strong antioxidant response to hyperoxia. Conclusion: Overall these results suggest that AKAP1 overexpression and modulation of Drp1 phosphorylation at Ser637 is an important therapeutic strategy for acute lung injury.

3.
Front Pharmacol ; 13: 890380, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910393

RESUMO

Rationale: Idiopathic pulmonary fibrosis (IPF) is characterized by mitochondrial dysfunction. However, details about the non-mitochondrial enzymes that sustain the proliferative nature of IPF are unclear. Aconitases are a family of enzymes that sustain metabolism inside and outside mitochondria. It is hypothesized that aconitase 1 (ACO1) plays an important role in the pathogenesis of IPF given that ACO1 represents an important metabolic hub in the cytoplasm. Objectives: To determine if ACO1 expression in IPF lungs shows specific patterns that may be important in the pathogenesis of IPF. To determine the similarities and differences in ACO1 expression in IPF, bleomycin-treated, and aging lungs. Methods: ACO1 expression in IPF lungs were characterized and compared to non-IPF controls by western blotting, immunostaining, and enzymatic activity assay. ACO1-expressing cell types were identified by multicolor immunostaining. Using similar methods, the expression profiles of ACO1 in IPF lungs versus bleomycin-treated and aged mice were investigated. Measurements and main results: Lower lobes of IPF lungs, unlike non-IPF controls, exhibit significantly high levels of ACO1. Most of the signals colocalize with von Willebrand factor (vWF), a lineage marker for vascular endothelial cells. Bleomycin-treated lungs also show high ACO1 expressions. However, most of the signals colocalize with E-cadherin and/or prosurfactant protein C, representative epithelial cell markers, in remodeled areas. Conclusions: A characteristic ACO1 expression profile observed in IPF vasculatures may be a promising diagnostic target. It also may give clues as to how de novo angiogenesis contributes to the irreversible nature of IPF.

4.
Front Physiol ; 13: 814510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431986

RESUMO

Acute Lung Injury (ALI), characterized by bilateral pulmonary infiltrates that restrict gas exchange, leads to respiratory failure. It is caused by an innate immune response with white blood cell infiltration of the lungs, release of cytokines, an increase in reactive oxygen species (ROS), oxidative stress, and changes in mitochondrial function. Mitochondrial alterations, changes in respiration, ATP production and the unbalancing fusion and fission processes are key events in ALI pathogenesis and increase mitophagy. Research indicates that BMI1 (B cell-specific Moloney murine leukemia virus integration site 1), a protein of the Polycomb repressive complex 1, is a cell cycle and survival regulator that plays a role in mitochondrial function. BMI1-silenced cultured lung epithelial cells were exposed to hyperoxia to determine the role of BMI1 in mitochondrial metabolism. Its expression significantly decreases in human lung epithelial cells (H441) following hyperoxic insult, as determined by western blot, Qrt-PCR, and functional analysis. This decrease correlates with an increase in mitophagy proteins, PINK1, Parkin, and DJ1; an increase in the expression of tumor suppressor PTEN; changes in the expression of mitochondrial biomarkers; and decreases in the oxygen consumption rate (OCR) and tricarboxylic acid enzyme activity. Our bioinformatics analysis suggested that the BMI1 multifunctionality is determined by its high level of intrinsic disorder that defines the ability of this protein to bind to numerous cellular partners. These results demonstrate a close relationship between BMI1 expression and mitochondrial health in hyperoxia-induced acute lung injury (HALI) and indicate that BMI1 is a potential therapeutic target to treat ALI and Acute Respiratory Distress Syndrome.

5.
Front Pharmacol ; 13: 762840, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370705

RESUMO

Acute lung injury (ALI) and its severe manifestation, acute respiratory distress syndrome (ARDS), are treated with high concentrations of supplementary oxygen. However, prolonged exposure to high oxygen concentrations stimulates the production of reactive oxygen species (ROS), which damages the mitochondria and accumulates misfolded proteins in the endoplasmic reticulum (ER). The mitochondrial protein A-kinase anchoring protein 1 (Akap1) is critical for mitochondrial homeostasis. It is known that Akap1 deficiency results in heart damage, neuronal development impairment, and mitochondrial malfunction in preclinical studies. Our laboratory recently revealed that deleting Akap1 increases the severity of hyperoxia-induced ALI in mice. To assess the role of Akap1 deletion in ER stress in lung injury, wild-type and Akap1 -/- mice were exposed to hyperoxia for 48 h. This study indicates that Akap1 -/- mice exposed to hyperoxia undergo ER stress, which is associated with an increased expression of BiP, JNK phosphorylation, eIF2α phosphorylation, ER stress-induced cell death, and autophagy. This work demonstrates that deleting Akap1 results in increased ER stress in the lungs of mice and that hyperoxia exacerbates ER stress-related consequences.

6.
Cell Biochem Biophys ; 80(2): 295-299, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35179710

RESUMO

Scientists recently made a significant breakthrough in the recognition of pathogens via guanylate binding protein 1 (GBP1). Wandel et al. [1] in Nature Immunology described their findings where GBP1 acts as a pattern recognition receptor that directly connects to lipopolysaccharide (LPS). GBP1 identifies gram-negative bacteria such as the enteric pathogen, Salmonella enterica serovar Typhimurium, that enter the cytoplasm of the host cell. GBP1 then quickly connects to LPS and stimulates the assembly of more GBPs in the order of GBP2, GBP3, and GBP4. Subsequently, inflammatory caspase-4 arrives at the GBP1-4 activation platform. Next, the activated caspase-4 drives the cleavage of Gasdermin D, triggering the release of the pro-inflammatory cytokine, interleukin-18 (IL-18) leading to inflammatory pyroptosis and cell death. Not only do these remarkable results expand our current understanding of GBP1, but they also carry the potential to develop therapeutic targets for inflammasome-mediated human disorders.


Assuntos
Proteínas de Ligação ao GTP , Inflamassomos , Piroptose , Citocinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Humanos , Inflamassomos/metabolismo , Lipopolissacarídeos
7.
FASEB J ; 36(2): e22143, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34985777

RESUMO

Adenosine deaminase acting on RNA 2 (ADAR2), an RNA editing enzyme is involved in a site-selective modification of adenosine (A) to inosine (I) in double-stranded RNA (dsRNA). Its role in the lungs is unknown. The phenotypic characterization of Adarb1 mice that lacked ADAR2 auto-regulation due to the deletion of editing complementary sequence (ΔECS mice) determined the functional role of ADAR2 in the lungs. ADAR2 protein expression increased in the ΔECS mice. These mice display immune cell infiltration and alveolar disorganization. The lung wet by dry ratio indicates there is no lung edema in ΔECS mice. Bronchoalveolar lavage (BAL) analysis of ΔECS mice reveals a significant increase in neutrophils. Interestingly, ΔECS mice spontaneously develop lung fibrosis as indicated by Sirius red staining of collagen fibers in the lung sections and a significant increase in hydroxyproline level in their lungs. ADAR2 expression increased significantly in a bleomycin mouse model, implicating a role of ADAR2 in lung fibrosis. Furthermore, there is a likely possibility that the genetically modified ΔECS mice does not model the physiological or pathophysiological process of lung fibrosis. Nevertheless, this model is useful in interrogating the role of ADAR2 in the lungs. The Ctgf mRNA and connective tissue growth factor (CTGF) protein significantly increased in ΔECS lungs and occurs in bronchial epithelial cells. There is a significant increase in Human antigen R (ELAVL1; HuR) protein levels in ΔECS lungs and suggests a role in stabilizing Ctgf mRNA. Lung mechanics such as total respiratory resistance, Newtonian resistance and tissue damping were increased, whereas inspiratory capacity was decreased in the ΔECS mice. Taken together, these data indicate that overexpression of ADAR2 causes spontaneous lung fibrosis via HuR-mediated CTGF signaling and implicate a role for ADAR2 auto-regulation in lung homeostasis. The identification of ADAR2 target genes in ΔECS mice would facilitate a mechanistic understanding of the role of ADAR2 in the lungs and provide a therapeutic strategy for lung fibrosis.


Assuntos
Adenosina Desaminase/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/fisiologia , Animais , Bleomicina/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/tratamento farmacológico , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Front Pharmacol ; 11: 597942, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33597876

RESUMO

Acute lung injury (ALI), a milder form of acute respiratory distress syndrome (ARDS), is a leading cause of mortality in older adults with an increasing prevalence. Oxygen therapy, is a common treatment for ALI, involving exposure to a high concentration of oxygen. Unfortunately, hyperoxia induces the formation of reactive oxygen species which can cause an increase in 4-HNE (4-hydroxy 2 nonenal), a toxic byproduct of lipid peroxidation. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) serves as an endogenous shield against oxidative stress-mediated damage by clearing 4-HNE. Alda-1 [(N-(1, 3 benzodioxol-5-ylmethyl)-2, 6- dichloro-benzamide)], a small molecular activator of ALDH2, protects against reactive oxygen species-mediated oxidative stress by promoting ALDH2 activity. As a result, Alda-1 shields against ischemic reperfusion injury, heart failure, stroke, and myocardial infarction. However, the mechanisms of Alda-1 in hyperoxia-induced ALI remains unclear. C57BL/6 mice implanted with Alzet pumps received Alda-1 in a sustained fashion while being exposed to hyperoxia for 48 h. The mice displayed suppressed immune cell infiltration, decreased protein leakage and alveolar permeability compared to controls. Mechanistic analysis shows that mice pretreated with Alda-1 also experience decreased oxidative stress and enhanced levels of p-Akt and mTOR pathway associated proteins. These results show that continuous delivery of Alda-1 protects against hyperoxia-induced lung injury in mice.

9.
Aging (Albany NY) ; 11(12): 3909-3918, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31209184

RESUMO

Acute lung injury (ALI) is a major cause of morbidity and mortality worldwide, especially in aged populations. Mitochondrial damage is one of the key features of ALI. Hyperoxia-induced lung injury model in mice has been widely used for ALI study because it features many ALI phenotypes including, but not limited to, mitochondrial and vascular endothelial cell damage. Recently, accumulating evidence has shown that mitochondrial aldehyde dehydrogenase 2 (ALDH2) has a protective effect against oxidative stress mediated cell damage in epithelial cells. However, it is not known whether ALDH2 protects against oxidative stress in vascular endothelial cells. In this current study, we attempted to find the capacity of Alda-1 [(N-(1,3benzodioxol-5-ylmethyl)-2,6- dichloro-benzamide), an ALDH2 activator] to protect against oxidative stress in human microvascular endothelial cells (HMVEC). HMVEC pretreated with Alda-1 prior to hyperoxic exposure vs non-treated controls showed i) lower 4-hydroxynonenal (4-HNE) levels, ii) significantly decreased expressions of Bax and Cytochrome C, iii) partially restored activity and expression of ALDH2 and iv) significantly improved mitochondrial membrane potential. These results suggest that ALDH2 protein in lung vascular endothelial cells is a promising therapeutic target for the treatment of ALI and that Alda-1 is a potential treatment option.


Assuntos
Benzamidas/farmacologia , Benzodioxóis/farmacologia , Células Endoteliais/efeitos dos fármacos , Hiperóxia/fisiopatologia , Mitocôndrias/efeitos dos fármacos , Oxigênio/efeitos adversos , Lesão Pulmonar Aguda , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Microvasos , Estresse Oxidativo/efeitos dos fármacos
10.
Aging (Albany NY) ; 11(1): 209-229, 2019 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-30636723

RESUMO

Atp8b1 (ATPase, aminophospholipid transporter, class I, type 8B, member 1) is a cardiolipin transporter in the apical membrane of lung epithelial cells. While the role of Atp8b1 in pneumonia-induced acute lung injury (ALI) has been well studied, its potential role in oxidative stress-induced ALI is poorly understood. We herein show that Atp8b1G308V/G308V mice under hyperoxic conditions display exacerbated cell apoptosis at alveolar epithelium and aberrant proliferation of club cells at bronchiolar epithelium. This hyperoxia-induced ambivalent response in Atp8b1G308V/G308V lungs was followed by patchy distribution of non-uniform interstitial fibrosis at late recovery phase under normoxia. Since this club cell abnormality is commonly observed between Atp8b1G308V/G308V lungs under hyperoxic conditions and IPF lungs, we characterized this mouse fibrosis model focusing on club cells. Intriguingly, subcellular morphological analysis of IPF lungs, using transmission electron microscopy (TEM), revealed that metaplastic bronchiolar epithelial cells in fibrotic lesions and deformed type II alveolar epithelial cells (AECs) in alveoli with mild fibrosis, have common morphological features including cytoplasmic vacuolation and dysmorphic lamellar bodies. In conclusion, the combination of Atp8b1 mutation and hyperoxic insult serves as a novel platform to study unfocused role of club cells in IPF.


Assuntos
Adenosina Trifosfatases/metabolismo , Oxigênio/toxicidade , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fibrose Pulmonar/etiologia , Adenosina Trifosfatases/genética , Animais , Morte Celular , Proliferação de Células , Células Epiteliais/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Mutação , Estresse Oxidativo , Proteínas de Transferência de Fosfolipídeos/genética , Alvéolos Pulmonares/citologia , Uteroglobina/genética , Uteroglobina/metabolismo
11.
Am J Physiol Cell Physiol ; 316(4): C492-C508, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649915

RESUMO

Aging is a key contributor for subclinical progression of late-onset lung diseases. Basal, club, and type II alveolar epithelial cells (AECs) are lung epithelial progenitors whose capacities of differentiation are extensively studied. The timely transition of these cells in response to environmental changes helps maintain the intricate organization of lung structure. However, it remains unclear how aging affects their behavior. This paper demonstrates that the protein expression profiles of a type II AEC marker, prosurfactant protein C (pro-SPC), and a basal cell marker, p63, are altered in the lungs of 14-mo-old versus 7- to 9-wk-old mice. Expression of NH2-terminal-truncated forms of p63 (ΔNp63), a basal cell marker, and claudin-10, a club cell marker, in cytoplasmic extracts of lungs of 14-mo-old mice was upregulated. In contrast, nuclear expression of full-length forms of p63 (TAp63) decreases with age. These alterations in protein expression profiles coincide with dramatic changes in lung functions including compliance. Whole tissue lysates of middle-aged versus aged rhesus monkey lungs display similar age-associated alterations in pro-SPC expression. An age-associated decrease of TAp63 in nuclear lysates was observed in aged monkey group. Moreover, the lungs of 14-mo-old versus 7- to 9-wk-old mice display a wider spreading of ΔNp63-positive CCSP-positive bronchiolar epithelial cells. This expansion did not involve upregulation of Ki67, a representative proliferation marker. Collectively, it is postulated that 1) this expansion is secondary to a transition of progenitor cells committed to club cells from ΔNp63-negative to ΔNp63-positive status, and 2) high levels of cytoplasmic ΔNp63 expression trigger club cell migration.


Assuntos
Envelhecimento/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , Transativadores/biossíntese , Uteroglobina/biossíntese , Envelhecimento/patologia , Sequência de Aminoácidos , Animais , Células Epiteliais/patologia , Expressão Gênica , Células HEK293 , Humanos , Pulmão/patologia , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Células-Tronco/metabolismo , Células-Tronco/patologia , Transativadores/genética , Uteroglobina/genética
12.
Am J Physiol Lung Cell Mol Physiol ; 314(5): L860-L870, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29388469

RESUMO

Critically ill patients are commonly treated with high levels of oxygen, hyperoxia, for prolonged periods of time. Unfortunately, extended exposure to hyperoxia can exacerbate respiratory failure and lead to a high mortality rate. Mitochondrial A-kinase anchoring protein (Akap) has been shown to regulate mitochondrial function. It has been reported that, under hypoxic conditions, Akap121 undergoes proteolytic degradation and promotes cardiac injury. However, the role of Akap1 in hyperoxia-induced acute lung injury (ALI) is largely unknown. To address this gap in our understanding of Akap1, we exposed wild-type ( wt) and Akap1-/- mice to 100% oxygen for 48 h, a time point associated with lung damage in the murine model of ALI. We found that under hyperoxia, Akap1-/- mice display increased levels of proinflammatory cytokines, immune cell infiltration, and protein leakage in lungs, as well as increased alveolar capillary permeability compared with wt controls. Further analysis revealed that Akap1 deletion enhances lung NF-κB p65 activity as assessed by immunoblotting and DNA-binding assay and mitochondrial autophagy-related markers, PINK1 and Parkin. Ultrastructural analysis using electron microscopy revealed that Akap1 deletion was associated with remarkably aberrant mitochondria and lamellar bodies in type II alveolar epithelial cells. Taken together, these results demonstrate that Akap1 genetic deletion increases the severity of hyperoxia-induced acute lung injury in mice.


Assuntos
Proteínas de Ancoragem à Quinase A/fisiologia , Lesão Pulmonar Aguda/etiologia , Células Epiteliais Alveolares/patologia , Hiperóxia/complicações , Mitocôndrias/patologia , Oxigênio/metabolismo , Lesão Pulmonar Aguda/patologia , Células Epiteliais Alveolares/metabolismo , Animais , Deleção de Genes , Hiperóxia/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Deleção de Sequência
13.
Methods Mol Biol ; 1709: 87-96, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29177653

RESUMO

Hsp90 has emerged as a key chemotherapeutic target for the development of drugs for the treatment of cancer and neurodegenerative diseases. The shortcomings of many of the Hsp90 inhibitors that have made it to clinical trials have bolstered the need to identify new lead compounds with superior properties. Here, we describe a high-throughput screen for the identification of Hsp90 inhibitors based on the refolding of thermally denatured firefly luciferase.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Ensaios de Triagem em Larga Escala/métodos , Proteômica/métodos , Animais , Resposta ao Choque Térmico , Humanos , Luciferases
14.
Aging (Albany NY) ; 8(11): 3091-3109, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27899769

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an age-related multifactorial disease featuring non-uniform lung fibrosis. The decisive cellular events at early stages of IPF are poorly understood. While the involvement of club cells in IPF pathogenesis is unclear, their migration has been associated with lung fibrosis. In this study, we labeled club cells immunohistochemically in IPF lungs using a club cell marker Claudin-10 (Cldn10), a unique protein based on the recent report which demonstrated that the appearance of Cldn10 in developing and repairing lungs precedes other club cell markers including club cell secretory protein (CCSP). Cldn10-positive cells in IPF lungs displayed marked pleomorphism and were found in varied arrangements, suggesting their phenoconversion. These results were corroborated by immunogold labeling for Cldn10. Further, immunohistochemical double-labeling for Cldn10 and α-smooth muscle actin (α-SMA) demonstrated that aberrant α-SMA signals are frequently encountered near disorganized Cldn10-positive cells in hyperplastic bronchiolar epithelium and thickened interstitium of IPF lungs. Collectively, these data indicate that club cells actively participate in the initiation and progression of IPF through phenoconversion involving the acquisition of proliferative and migratory abilities. Thus, our new findings open the possibility for club cell-targeted therapy to become a strategic option for the treatment of IPF.


Assuntos
Actinas/metabolismo , Células Epiteliais Alveolares/metabolismo , Movimento Celular , Claudinas/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Células Epiteliais Alveolares/citologia , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia
15.
Oncotarget ; 7(20): 29081-91, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27058411

RESUMO

BACKGROUND: Acute lung injury (ALI) is characterized by alveolar damage, increased levels of pro-inflammatory cytokines and impaired alveolar fluid clearance. Recently, we showed that the deletion of Apoptosis signal-regulating kinase 1 (ASK1) protects against hyperoxia-induced acute lung injury (HALI) by suppressing IL-1ß and TNF-α. Previously, our data revealed that the suppressor of cytokine signaling-1 (SOCS-1) overexpression restores alveolar fluid clearance in HALI by inhibiting ASK-1 and suppressing IL-1ß levels. Furthermore, IL-1ß is known to inhibit the expression of epithelial sodium channel α-subunit (ENaC) via a p38 MAPK signaling pathway. OBJECTIVE: To determine whether SOCS-1 overexpression in MLE-12 cells would protect against IL-1ß-mediated depletion of αENaC by suppressing ASK-1 expression. METHODS: We co-transfected MLE-12 cells with SOCS-1 overexpressing plasmid with or without IL-1ß in the presence or absence of sodium channel inhibitor, amiloride. We measured potential difference, transepithelial current, resistance, and sodium uptake levels across MLE-12 cells. We studied the effect of ASK-1 depletion, as well as ASK-1 and SOCS-1 overexpression on αENaC expression. RESULTS: SOCS-1 overexpression sufficiently restored transepithelial current and resistance in MLE-12 cells treated with either IL-1ß or amiloride. The αENaC mRNA levels and sodium transport were increased in SOCS-1 overexpressing MLE-12 cells exposed to IL-1ß. Depletion of ASK-1 in MLE-12 cells increased αENaC mRNA levels. Interestingly, SOCS-1 overexpression restored αENaC expression in MLE-12 cells in the presence of ASK-1 overexpression. CONCLUSION: Collectively, these findings suggest that SOCS-1 may exert its protective effect by rescuing αENaC expression via suppression of ASK-1.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/metabolismo , Interleucina-1beta/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Linhagem Celular , Células Epiteliais/patologia , Humanos , Camundongos
16.
Am J Physiol Lung Cell Mol Physiol ; 310(6): L572-81, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26747786

RESUMO

Increasing evidence shows that hyperoxia is a serious complication of oxygen therapy in acutely ill patients that causes excessive production of free radicals leading to hyperoxia-induced acute lung injury (HALI). Our previous studies have shown that P2X7 receptor activation is required for inflammasome activation during HALI. However, the role of P2X7 in HALI is unclear. The main aim of this study was to determine the effect of P2X7 receptor gene deletion on HALI. Wild-type (WT) and P2X7 knockout (P2X7 KO) mice were exposed to 100% O2 for 72 h. P2X7 KO mice treated with hyperoxia had enhanced survival in 100% O2 compared with the WT mice. Hyperoxia-induced recruitment of inflammatory cells and elevation of IL-1ß, TNF-α, monocyte chemoattractant protein-1, and IL-6 levels were attenuated in P2X7 KO mice. P2X7 deletion decreased lung edema and alveolar protein content, which are associated with enhanced alveolar fluid clearance. In addition, activation of the inflammasome was suppressed in P2X7-deficient alveolar macrophages and was associated with suppression of IL-1ß release. Furthermore, P2X7-deficient alveolar macrophage in type II alveolar epithelial cells (AECs) coculture model abolished protein permeability across mouse type II AEC monolayers. Deletion of P2X7 does not lead to a decrease in epithelial sodium channel expression in cocultures of alveolar macrophages and type II AECs. Taken together, these findings show that deletion of P2X7 is a protective factor and therapeutic target for the amelioration of hyperoxia-induced lung injury.


Assuntos
Lesão Pulmonar Aguda/genética , Hiperóxia/complicações , Inflamassomos/metabolismo , Receptores Purinérgicos P2X7/genética , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/imunologia , Células Epiteliais Alveolares/metabolismo , Animais , Caspase 1/metabolismo , Células Cultivadas , Técnicas de Cocultura , Feminino , Hiperóxia/genética , Hiperóxia/imunologia , Interleucina-1beta/biossíntese , Peroxidação de Lipídeos , Masculino , Potenciais da Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Fatores de Proteção , Receptores Purinérgicos P2X7/metabolismo
17.
PLoS One ; 11(1): e0147652, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26807721

RESUMO

Apoptosis signal-regulating kinase 1 (ASK1), a member of the MAPK kinase kinase kinase (MAP3K) family, is activated by various stimuli, which include oxidative stress, endoplasmic reticulum (ER) stress, calcium influx, DNA damage-inducing agents and receptor-mediated signaling through tumor necrosis factor receptor (TNFR). Inspiration of a high concentration of oxygen is a palliative therapy which counteracts hypoxemia caused by acute lung injury (ALI)-induced pulmonary edema. However, animal experiments so far have shown that hyperoxia itself could exacerbate ALI through reactive oxygen species (ROS). Our previous data indicates that ASK1 plays a pivotal role in hyperoxia-induced acute lung injury (HALI). However, it is unclear whether or not deletion of ASK1 in vivo protects against HALI. In this study, we investigated whether ASK1 deletion would lead to attenuation of HALI. Our results show that ASK1 deletion in vivo significantly suppresses hyperoxia-induced elevation of inflammatory cytokines (i.e. IL-1ß and TNF-α), cell apoptosis in the lung, and recruitment of immune cells. In summary, the results from the study suggest that deletion of ASK1 in mice significantly inhibits hyperoxic lung injury.


Assuntos
Lesão Pulmonar Aguda/genética , Hiperóxia/complicações , Pulmão/metabolismo , MAP Quinase Quinase Quinase 5/genética , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Animais , Apoptose/genética , Epitélio/metabolismo , Epitélio/patologia , Hiperóxia/genética , Hiperóxia/patologia , Interleucina-1beta/metabolismo , Pulmão/patologia , MAP Quinase Quinase Quinase 5/metabolismo , Camundongos , Camundongos Knockout , Fator de Necrose Tumoral alfa/metabolismo
18.
Oncotarget ; 6(39): 41508-21, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26484418

RESUMO

Prolonged exposure to oxidative stress causes Acute Lung Injury (ALI) and significantly impairs pulmonary function. Previously we have demonstrated that mitochondrial dysfunction is a key pathological factor in hyperoxic ALI. While it is known that hyperoxia induces the production of stable, but toxic 4-hydroxynonenal (4-HNE) molecule, it is unknown how the reactive aldehyde disrupts mitochondrial function. Our previous in vivo study indicated that exposure to hyperoxia significantly increases 4-HNE-Protein adducts, as well as levels of MDA in total lung homogenates. Based on the in vivo studies, we explored the effects of 4-HNE in human small airway epithelial cells (SAECs). Human SAECs treated with 25 µM of 4-HNE showed a significant decrease in cellular viability and increased caspase-3 activity. Moreover, 4-HNE treated SAECs showed impaired mitochondrial function and energy production indicated by reduced ATP levels, mitochondrial membrane potential, and aconitase activity. This was followed by a significant decrease in mitochondrial oxygen consumption and depletion of the reserve capacity. The direct effect of 4-HNE on the mitochondrial respiratory chain was confirmed using Rotenone. Furthermore, SAECs treated with 25 µM 4-HNE showed a time-dependent depletion of total Thioredoxin (Trx) proteins and Trx activity. Taken together, our results indicate that 4-HNE induces cellular and mitochondrial dysfunction in human SAECs, leading to an impaired endogenous antioxidant response.


Assuntos
Aldeídos/toxicidade , Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Oxidantes/toxicidade , Aconitato Hidratase/metabolismo , Trifosfato de Adenosina/metabolismo , Aldeídos/metabolismo , Animais , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Hiperóxia/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Tiorredoxinas/metabolismo , Fatores de Tempo
19.
Cell Immunol ; 297(1): 40-5, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26123077

RESUMO

Incomplete clearance of apoptotic cells and reactive oxygen species (ROS) release are known to trigger inflammasome activation causing severe inflammation in acute lung injury and various metabolic and autoimmune diseases. Moreover, it has been reported that apoptotic cell clearance and ROS-mediated apoptosis critically depend on mitochondrial uncoupling protein-2 (UCP2). However, the relationship between UCP2 and inflammasome activation has not been studied. This report investigates the role of UCP2 in the expression and activation of NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome in human macrophages. We found that UCP2 overexpression significantly enhanced the expression levels of NLRP3. The NLRP3 expression levels were significantly suppressed in THP1 cells treated with genipin, a UCP2 inhibitor, compared to controls. In addition, genipin altered adenosine triphosphate (ATP)- and hydrogen peroxide (H2O2)-mediated interleukin-1 beta (IL-1ß) secretion and significantly suppressed caspase-1 activity in inflammasome-activated human macrophages. Taken together, our results suggest that genipin modulates NLRP3 inflammasome activation and ATP- or H2O2-mediated IL-1ß release.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Inflamassomos/efeitos dos fármacos , Canais Iônicos/imunologia , Iridoides/farmacologia , Proteínas Mitocondriais/imunologia , Apoptose/imunologia , Proteínas de Transporte/biossíntese , Proteínas de Transporte/metabolismo , Caspase 1/imunologia , Células Cultivadas , Ativação Enzimática/imunologia , Regulação da Expressão Gênica , Humanos , Inflamassomos/metabolismo , Inflamação/imunologia , Interleucina-1beta/imunologia , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/biossíntese , Macrófagos/imunologia , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/biossíntese , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio/imunologia , Proteína Desacopladora 2
20.
Cell Physiol Biochem ; 36(5): 2012-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26202361

RESUMO

BACKGROUND: Neuregulin (NRG)-1-human epidermal receptor (HER)-2 signaling pathway is a key regulator of IL-1ß-mediated pulmonary inflammation and epithelial permeability. The inflammasome is a newly discovered molecular platform required for caspase-1 activation and maturation of IL-1ß. However, the role of the inflammasome in NRG-1-HER2 signaling-mediated alveolar cell permeability is unknown. METHODS: The inflammasome was activated or inhibited in THP-1 cells; supernatants from these cells were added to A549 cells and human small airway epithelial cells (HSAEC). The protein expression of NRG-1 and phospho-HER2 (pHER2) were measured by Western blot analysis and epithelial permeability was measured using Lucifer yellow dye. RESULTS: Results reveal that alveolar permeability in A549 cells and HSAEC is increased when treated with supernatants of inflammasome-activated THP-1 cells. Alveolar permeability is significantly suppressed when treated with supernatant of inflammasome-inhibited THP-1 cells. Inflammasome-mediated permeability is decreased when A549 cells and HSAEC are pretreated with IL-1ß receptor antagonist (IL-1ßRA). In addition, HER2 kinase inhibitor AG825 or NRG-1 inhibitor TAPI inhibits inflammasome-mediated permeability in A549 cells and HSAEC demonstrating critical roles of IL-1ß, NRG-1, and HER2 in inflammasome-mediated alveolar permeability. CONCLUSION: These findings suggest that inflammasome-induced alveolar cell permeability is mediated by NRG-1/HER2 signaling through IL-1ß regulation.


Assuntos
Inflamassomos , Neuregulina-1/metabolismo , Linhagem Celular Tumoral , Genes erbB-2 , Humanos , Interleucina-1beta/metabolismo , Alvéolos Pulmonares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...