Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(3): e0414022, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37125926

RESUMO

Multidrug-resistant Vibrio cholerae O1 strains have long been observed in Africa, and strains exhibiting new resistance phenotypes have emerged during recent epidemics in Kenya. This study aimed to determine the epidemiological aspects, drug resistance patterns, and genetic elements of V. cholerae O1 strains isolated from two cholera epidemics in Kenya between 2007 and 2010 and between 2015 and 2016. A total of 228 V. cholerae O1 strains, including 226 clinical strains isolated from 13 counties in Kenya during the 2007-2010 and 2015-2016 cholera epidemics and two environmental isolates (from shallow well water and spring water isolates) isolated from Pokot and Kwale Counties, respectively, in 2010 were subjected to biotyping, serotyping, and antimicrobial susceptibility testing, including the detection of antibiotic resistance genes and mobile genetic elements. All V. cholerae isolates were identified as El Tor biotypes and susceptible to ceftriaxone, gentamicin, and ciprofloxacin. The majority of isolates were resistant to trimethoprim-sulfamethoxazole (94.6%), streptomycin (92.8%), and nalidixic acid (64.5%), while lower resistance was observed against ampicillin (3.6%), amoxicillin (4.2%), chloramphenicol (3.0%), and doxycycline (1.8%). Concurrently, the integrating conjugative (SXT) element was found in 95.5% of the V. cholerae isolates; conversely, class 1, 2, and 3 integrons were absent. Additionally, 64.5% of the isolates exhibited multidrug resistance patterns. Antibiotic-resistant gene clusters suggest that environmental bacteria may act as cassette reservoirs that favor resistant pathogens. On the other hand, the 2015-2016 epidemic strains were found susceptible to most antibiotics except nalidixic acid. This revealed the replacement of multidrug-resistant strains exhibiting new resistance phenotypes that emerged after Kenya's 2007-2010 epidemic. IMPORTANCE Kenya is a country where cholera is endemic; it has experienced three substantial epidemics over the past few decades, but there are limited data on the drug resistance patterns of V. cholerae at the national level. To the best of our knowledge, this is the first study to investigate the antimicrobial susceptibility profiles of V. cholerae O1 strains isolated from two consecutive epidemics and to examine their associated antimicrobial genetic determinants. Our study results revealed two distinct antibiotic resistance trends in two separate epidemics, particularly trends for multidrug-associated mobile genetic elements and chromosomal mutation-oriented resistant strains from the 2007-2010 epidemic. In contrast, only nalidixic acid-associated chromosomal mutated strains were isolated from the 2015-2016 epidemic. This study also found similar patterns of antibiotic resistance in environmental and clinical strains. Continuous monitoring is needed to control emerging multidrug-resistant isolates in the future.


Assuntos
Cólera , Epidemias , Vibrio cholerae O1 , Humanos , Vibrio cholerae O1/genética , Cólera/epidemiologia , Cólera/microbiologia , Antibacterianos/farmacologia , Quênia/epidemiologia , Ácido Nalidíxico , Surtos de Doenças
2.
Infect Genet Evol ; 68: 231-248, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30543939

RESUMO

A monovalent rotavirus vaccine (RV1) was introduced to the national immunization program in Kenya in July 2014. There was increased detection of uncommon G3P[6] strains that coincided temporally with the timing of this vaccine introduction. Here, we sequenced and characterized the full genomes of two post-vaccine G3P[6] strains, RVA/Human-wt/KEN/KDH1951/2014/G3P[6] and RVA/Human-wt/KEN/KDH1968/2014/G3P[6], as representatives of these uncommon strains. On full-genomic analysis, both strains exhibited a DS-1-like genotype constellation: G3-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that all 11 genes of strains KDH1951 and KDH1968 were very closely related to those of human G3P[6] strains isolated in Uganda in 2012-2013, indicating the derivation of these G3P[6] strains from a common ancestor. Because the uncommon G3P[6] strains that emerged in Kenya are fully heterotypic as to the introduced vaccine strain regarding the genotype constellation, vaccine effectiveness against these G3P[6] strains needs to be closely monitored.


Assuntos
Genoma Viral , Genômica , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/virologia , Rotavirus/classificação , Rotavirus/genética , Genes Virais , Genômica/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Quênia/epidemiologia , Filogenia , Rotavirus/imunologia , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus/imunologia , Análise de Sequência de DNA , Vacinação
3.
Trop Med Health ; 46: 30, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30116141

RESUMO

The NUITM-KEMRI biosafety training program was developed for capacity building of new biosafety level three (BSL-3) laboratory users. The training program comprehensively covers biosafety and biosecurity theory and practice. Its training curriculum is based on the WHO biosafety guidelines, local biosafety standards, and ongoing biosafety level three research activities in the facility, also taking into consideration the emerging public health issues. The program's training approach enhances the participant's biosafety and biosecurity knowledge and builds their skills through the hands-on practice sessions and mentorship training. Subsequently, the trainees are able to integrate acquired knowledge and good practices into their routine laboratory procedures. This article describes implementation of the NUITM-KEMRI biosafety training program.

4.
Trop Med Int Health ; 23(4): 425-432, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29432666

RESUMO

OBJECTIVES: A two-dose oral monovalent rotavirus vaccine (RV1) was introduced into the Kenyan National Immunization Program in July 2014. We assessed trends in hospitalisation for rotavirus-specific acute gastroenteritis (AGE) and strain distribution among children <5 years in a rural, resource-limited setting in Kenya before and after the nationwide implementation of the vaccine. METHODS: Data on rotavirus AGE and strain distribution were derived from a 5-year hospital-based surveillance. We compared rotavirus-related hospitalisations and strain distribution in the 2-year post-vaccine period with the 3-year pre-vaccine baseline. Vaccine administrative data from the Unit of Vaccines and Immunization Services (UVIS) for Mbita sub-county were used to estimate rotavirus immunisation coverage in the study area. RESULTS: We observed a 48% (95% CI: 27-64%) overall decline in rotavirus-related hospitalisations among children aged <5 years in the post-vaccine period. Coverage with the last dose of rotavirus vaccine increased from 51% in year 1% to 72% in year 2 of the vaccine implementation. Concurrently, reductions in rotavirus hospitalisations increased from 40% in the first year to 53% in the second year of vaccine use. The reductions were most pronounced among the vaccine-eligible group, with the proportion of cases in this age group dropping to 14% in post-vaccine years from a high of 51% in the pre-vaccine period. A diversity of rotavirus strains circulated before the introduction of the vaccine with G1P[8] being the most dominant strain. G2P[4] replaced G1P[8] as the dominant strain after the vaccine was introduced. CONCLUSIONS: Rotavirus vaccination has resulted in a notable decline in hospital admissions for rotavirus infections in a rural resource-limited population in Kenya. This provides early evidence for continued use of rotavirus vaccines in routine childhood immunisations in Kenya. Our data also underscore the need for expanding coverage on second dose so as to maximise the impact of the vaccine.


Assuntos
Hospitalização , Programas de Imunização , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus , Rotavirus , População Rural , Vacinação , Doença Aguda , Criança , Pré-Escolar , Gastroenterite/etiologia , Gastroenterite/terapia , Gastroenterite/virologia , Recursos em Saúde , Hospitalização/estatística & dados numéricos , Humanos , Quênia , Rotavirus/classificação , Infecções por Rotavirus/complicações , Infecções por Rotavirus/virologia , Especificidade da Espécie , Cobertura Vacinal
5.
Trop Med Health ; 42(4): 171-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25589881

RESUMO

Pathogens handled in a Biosafety Level 3 (BSL-3) containment laboratory pose significant risks to laboratory staff and the environment. It is therefore necessary to develop competency and proficiency among laboratory workers and to promote appropriate behavior and practices that enhance safety through biosafety training. Following the installation of our BSL-3 laboratory at the Center for Microbiology Research-Kenya Medical Research Institute in 2006, a biosafety training program was developed to provide training on BSL-3 safety practices and procedures. The training program was developed based on World Health Organization specifications, with adjustments to fit our research activities and biosafety needs. The program is composed of three phases, namely initial assessment, a training phase including theory and a practicum, and a final assessment. This article reports the content of our training program.

6.
Trop Med Health ; 41(1): 27-37, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23533023

RESUMO

A biocontainment facility is a core component in any research setting due to the services it renders towards comprehensive biosafety observance. The NUITM-KEMRI P3 facility was set up in 2007 and has been actively in use since 2010 by researchers from this and other institutions. A number of hazardous agents have been handled in the laboratory among them MDR-TB and yellow fever viruses. The laboratory has the general physical and operational features of a P3 laboratory in addition to a number of unique features, among them the water-air filtration system, the eco-mode operation feature and automation of the pressure system that make the facility more efficient. It is equipped with biosafety and emergency response equipments alongside common laboratory equipments, maintained regularly using daily, monthly and yearly routines. Security and safety is strictly observed within the facility, enhanced by restricted entry, strict documentation and use of safety symbols. Training is also engrained within the operation of the laboratory and is undertaken and evaluated annually. Though the laboratory is in the process of obtaining accreditation, it is fully certified courtesy of the manufactures' and constructed within specified standards.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...