Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 528(7580): 119-22, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26595275

RESUMO

Drought threatens tropical rainforests over seasonal to decadal timescales, but the drivers of tree mortality following drought remain poorly understood. It has been suggested that reduced availability of non-structural carbohydrates (NSC) critically increases mortality risk through insufficient carbon supply to metabolism ('carbon starvation'). However, little is known about how NSC stores are affected by drought, especially over the long term, and whether they are more important than hydraulic processes in determining drought-induced mortality. Using data from the world's longest-running experimental drought study in tropical rainforest (in the Brazilian Amazon), we test whether carbon starvation or deterioration of the water-conducting pathways from soil to leaf trigger tree mortality. Biomass loss from mortality in the experimentally droughted forest increased substantially after >10 years of reduced soil moisture availability. The mortality signal was dominated by the death of large trees, which were at a much greater risk of hydraulic deterioration than smaller trees. However, we find no evidence that the droughted trees suffered carbon starvation, as their NSC concentrations were similar to those of non-droughted trees, and growth rates did not decline in either living or dying trees. Our results indicate that hydraulics, rather than carbon starvation, triggers tree death from drought in tropical rainforest.


Assuntos
Carbono/metabolismo , Secas , Floresta Úmida , Árvores/metabolismo , Clima Tropical , Água/metabolismo , Biomassa , Tamanho Corporal , Brasil , Metabolismo dos Carboidratos , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Estações do Ano , Solo/química , Árvores/crescimento & desenvolvimento , Xilema/metabolismo
2.
Nature ; 519(7543): 344-8, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25788097

RESUMO

Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.


Assuntos
Dióxido de Carbono/análise , Sequestro de Carbono , Floresta Úmida , Atmosfera/química , Biomassa , Brasil , Carbono/análise , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Caules de Planta/metabolismo , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Clima Tropical , Madeira/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...