Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(28): eadg1421, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996019

RESUMO

Genomic mechanisms enhancing risk in males may contribute to sex bias in autism. The ubiquitin protein ligase E3A gene (Ube3a) affects cellular homeostasis via control of protein turnover and by acting as transcriptional coactivator with steroid hormone receptors. Overdosage of Ube3a via duplication or triplication of chromosomal region 15q11-13 causes 1 to 2% of autistic cases. Here, we test the hypothesis that increased dosage of Ube3a may influence autism-relevant phenotypes in a sex-biased manner. We show that mice with extra copies of Ube3a exhibit sex-biasing effects on brain connectomics and autism-relevant behaviors. These effects are associated with transcriptional dysregulation of autism-associated genes, as well as genes differentially expressed in 15q duplication and in autistic people. Increased Ube3a dosage also affects expression of genes on the X chromosome, genes influenced by sex steroid hormone, and genes sex-differentially regulated by transcription factors. These results suggest that Ube3a overdosage can contribute to sex bias in neurodevelopmental conditions via influence on sex-differential mechanisms.


Assuntos
Transtorno Autístico , Transcriptoma , Ubiquitina-Proteína Ligases , Animais , Masculino , Feminino , Transtorno Autístico/genética , Camundongos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Comportamento Animal , Caracteres Sexuais , Encéfalo/metabolismo , Modelos Animais de Doenças , Predisposição Genética para Doença
2.
Nat Neurosci ; 27(7): 1318-1332, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38769153

RESUMO

Emotion recognition and the resulting responses are important for survival and social functioning. However, how socially derived information is processed for reliable emotion recognition is incompletely understood. Here, we reveal an evolutionarily conserved long-range inhibitory/excitatory brain network mediating these socio-cognitive processes. Anatomical tracing in mice revealed the existence of a subpopulation of somatostatin (SOM) GABAergic neurons projecting from the medial prefrontal cortex (mPFC) to the retrosplenial cortex (RSC). Through optogenetic manipulations and Ca2+ imaging fiber photometry in mice and functional imaging in humans, we demonstrate the specific participation of these long-range SOM projections from the mPFC to the RSC, and an excitatory feedback loop from the RSC to the mPFC, in emotion recognition. Notably, we show that mPFC-to-RSC SOM projections are dysfunctional in mouse models relevant to psychiatric vulnerability and can be targeted to rescue emotion recognition deficits in these mice. Our findings demonstrate a cortico-cortical circuit underlying emotion recognition.


Assuntos
Emoções , Córtex Pré-Frontal , Animais , Emoções/fisiologia , Córtex Pré-Frontal/fisiologia , Camundongos , Masculino , Humanos , Neurônios GABAérgicos/fisiologia , Vias Neurais/fisiologia , Somatostatina/metabolismo , Reconhecimento Psicológico/fisiologia , Camundongos Endogâmicos C57BL , Optogenética , Feminino , Giro do Cíngulo/fisiologia
3.
Cereb Cortex ; 33(21): 10750-10760, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37718159

RESUMO

Complement signaling is thought to serve as an opsonization signal to promote the phagocytosis of synapses by microglia. However, while its role in synaptic remodeling has been demonstrated in the retino-thalamic system, it remains unclear whether complement signaling mediates synaptic pruning in the brain more generally. Here we found that mice lacking the Complement receptor 3, the major microglia complement receptor, failed to show a deficit in either synaptic pruning or axon elimination in the developing mouse cortex. Instead, mice lacking Complement receptor 3 exhibited a deficit in the perinatal elimination of neurons in the cortex, a deficit that is associated with increased cortical thickness and enhanced functional connectivity in these regions in adulthood. These data demonstrate a role for complement in promoting neuronal elimination in the developing cortex.


Assuntos
Microglia , Neurônios , Camundongos , Animais , Encéfalo , Transdução de Sinais , Sinapses/fisiologia , Receptores de Complemento , Plasticidade Neuronal/fisiologia
4.
Transl Psychiatry ; 12(1): 305, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915065

RESUMO

The D-aspartate oxidase (DDO) gene encodes the enzyme responsible for the catabolism of D-aspartate, an atypical amino acid enriched in the mammalian brain and acting as an endogenous NMDA receptor agonist. Considering the key role of NMDA receptors in neurodevelopmental disorders, recent findings suggest a link between D-aspartate dysmetabolism and schizophrenia. To clarify the role of D-aspartate on brain development and functioning, we used a mouse model with constitutive Ddo overexpression and D-aspartate depletion. In these mice, we found reduced number of BrdU-positive dorsal pallium neurons during corticogenesis, and decreased cortical and striatal gray matter volume at adulthood. Brain abnormalities were associated with social recognition memory deficit at juvenile phase, suggesting that early D-aspartate occurrence influences neurodevelopmental related phenotypes. We corroborated this hypothesis by reporting the first clinical case of a young patient with severe intellectual disability, thought disorders and autism spectrum disorder symptomatology, harboring a duplication of a chromosome 6 region, including the entire DDO gene.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Adulto , Animais , Ácido Aspártico/metabolismo , Transtorno do Espectro Autista/genética , D-Aspartato Oxidase/química , D-Aspartato Oxidase/genética , D-Aspartato Oxidase/metabolismo , Ácido D-Aspártico/genética , Ácido D-Aspártico/metabolismo , Duplicação Gênica , Humanos , Deficiência Intelectual/genética , Transtornos da Memória/genética , Camundongos , Oxirredutases , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Neurobiol Dis ; 169: 105742, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35483565

RESUMO

Sensory abnormalities are a common feature in autism spectrum disorders (ASDs). Tactile responsiveness is altered in autistic individuals, with hypo-responsiveness being associated with the severity of ASD core symptoms. Similarly, sensory abnormalities have been described in mice lacking ASD-associated genes. Loss-of-function mutations in CNTNAP2 result in cortical dysplasia-focal epilepsy syndrome (CDFE) and autism. Likewise, Cntnap2-/- mice show epilepsy and deficits relevant with core symptoms of human ASDs, and are considered a reliable model to study ASDs. Altered synaptic transmission and synchronicity found in the cerebral cortex of Cntnap2-/- mice would suggest a network dysfunction. Here, we investigated the neural substrates of whisker-dependent responses in Cntnap2+/+ and Cntnap2-/- adult mice. When compared to controls, Cntnap2-/- mice showed focal hyper-connectivity within the primary somatosensory cortex (S1), in the absence of altered connectivity between S1 and other somatosensory areas. This data suggests the presence of impaired somatosensory processing in these mutants. Accordingly, Cntnap2-/- mice displayed impaired whisker-dependent discrimination in the textured novel object recognition test (tNORT) and increased c-fos mRNA induction within S1 following whisker stimulation. S1 functional hyperconnectivity might underlie the aberrant whisker-dependent responses observed in Cntnap2-/- mice, indicating that Cntnap2 mice are a reliable model to investigate sensory abnormalities that characterize ASDs.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Proteínas de Membrana , Proteínas do Tecido Nervoso , Animais , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Córtex Cerebral , Proteínas de Membrana/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Córtex Somatossensorial , Vibrissas
6.
Nat Commun ; 13(1): 1056, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217677

RESUMO

While shaped and constrained by axonal connections, fMRI-based functional connectivity reorganizes in response to varying interareal input or pathological perturbations. However, the causal contribution of regional brain activity to whole-brain fMRI network organization remains unclear. Here we combine neural manipulations, resting-state fMRI and in vivo electrophysiology to probe how inactivation of a cortical node causally affects brain-wide fMRI coupling in the mouse. We find that chronic inhibition of the medial prefrontal cortex (PFC) via overexpression of a potassium channel increases fMRI connectivity between the inhibited area and its direct thalamo-cortical targets. Acute chemogenetic inhibition of the PFC produces analogous patterns of fMRI overconnectivity. Using in vivo electrophysiology, we find that chemogenetic inhibition of the PFC enhances low frequency (0.1-4 Hz) oscillatory power via suppression of neural firing not phase-locked to slow rhythms, resulting in increased slow and δ band coherence between areas that exhibit fMRI overconnectivity. These results provide causal evidence that cortical inactivation can counterintuitively increase fMRI connectivity via enhanced, less-localized slow oscillatory processes.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Animais , Imageamento por Ressonância Magnética/métodos , Camundongos , Vias Neurais/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem
7.
Curr Biol ; 32(3): 631-644.e6, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34998465

RESUMO

Human imaging studies have shown that spontaneous brain activity exhibits stereotypic spatiotemporal reorganization in awake, conscious conditions with respect to minimally conscious states. However, whether and how this phenomenon can be generalized to lower mammalian species remains unclear. Leveraging a robust protocol for resting-state fMRI (rsfMRI) mapping in non-anesthetized, head-fixed mice, we investigated functional network topography and dynamic structure of spontaneous brain activity in wakeful animals. We found that rsfMRI networks in the awake state, while anatomically comparable to those observed under anesthesia, are topologically configured to maximize interregional communication, departing from the underlying community structure of the mouse axonal connectome. We further report that rsfMRI activity in wakeful animals exhibits unique spatiotemporal dynamics characterized by a state-dependent, dominant occurrence of coactivation patterns encompassing a prominent participation of arousal-related forebrain nuclei and functional anti-coordination between visual-auditory and polymodal cortical areas. We finally show that rsfMRI dynamics in awake mice exhibits a stereotypical temporal structure, in which state-dominant coactivation patterns are configured as network attractors. These findings suggest that spontaneous brain activity in awake mice is critically shaped by state-specific involvement of basal forebrain arousal systems and document that its dynamic structure recapitulates distinctive, evolutionarily relevant principles that are predictive of conscious states in higher mammalian species.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Mamíferos , Camundongos , Rede Nervosa/fisiologia , Vigília
8.
Cereb Cortex ; 32(14): 3042-3056, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34791077

RESUMO

Abnormal tactile response is an integral feature of Autism Spectrum Disorders (ASDs), and hypo-responsiveness to tactile stimuli is often associated with the severity of ASDs core symptoms. Patients with Phelan-McDermid syndrome (PMS), caused by mutations in the SHANK3 gene, show ASD-like symptoms associated with aberrant tactile responses. The neural underpinnings of these abnormalities are still poorly understood. Here we investigated, in Shank3b-/- adult mice, the neural substrates of whisker-guided behaviors, a key component of rodents' interaction with the surrounding environment. We assessed whisker-dependent behaviors in Shank3b-/- adult mice and age-matched controls, using the textured novel object recognition (tNORT) and whisker nuisance (WN) test. Shank3b-/- mice showed deficits in whisker-dependent texture discrimination in tNORT and behavioral hypo-responsiveness to repetitive whisker stimulation in WN. Sensory hypo-responsiveness was accompanied by a significantly reduced activation of the primary somatosensory cortex (S1) and hippocampus, as measured by c-fos mRNA induction, a proxy of neuronal activity following whisker stimulation. Moreover, resting-state fMRI showed a significantly reduced S1-hippocampal connectivity in Shank3b mutants, in the absence of altered connectivity between S1 and other somatosensory areas. Impaired crosstalk between hippocampus and S1 might underlie Shank3b-/- hypo-reactivity to whisker-dependent cues, highlighting a potentially generalizable somatosensory dysfunction in ASD.


Assuntos
Transtornos Cromossômicos , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso , Vibrissas , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/genética , Córtex Somatossensorial/metabolismo , Vibrissas/fisiologia
9.
Nat Commun ; 12(1): 6084, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667149

RESUMO

Postmortem studies have revealed increased density of excitatory synapses in the brains of individuals with autism spectrum disorder (ASD), with a putative link to aberrant mTOR-dependent synaptic pruning. ASD is also characterized by atypical macroscale functional connectivity as measured with resting-state fMRI (rsfMRI). These observations raise the question of whether excess of synapses causes aberrant functional connectivity in ASD. Using rsfMRI, electrophysiology and in silico modelling in Tsc2 haploinsufficient mice, we show that mTOR-dependent increased spine density is associated with ASD -like stereotypies and cortico-striatal hyperconnectivity. These deficits are completely rescued by pharmacological inhibition of mTOR. Notably, we further demonstrate that children with idiopathic ASD exhibit analogous cortical-striatal hyperconnectivity, and document that this connectivity fingerprint is enriched for ASD-dysregulated genes interacting with mTOR or Tsc2. Finally, we show that the identified transcriptomic signature is predominantly expressed in a subset of children with autism, thereby defining a segregable autism subtype. Our findings causally link mTOR-related synaptic pathology to large-scale network aberrations, revealing a unifying multi-scale framework that mechanistically reconciles developmental synaptopathy and functional hyperconnectivity in autism.


Assuntos
Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Sinapses/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adolescente , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Criança , Feminino , Haploinsuficiência , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sinapses/genética , Serina-Treonina Quinases TOR/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
10.
Neuropsychopharmacology ; 46(6): 1194-1206, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33342996

RESUMO

Cholinergic drugs acting at M1/M4 muscarinic receptors hold promise for the treatment of symptoms associated with brain disorders characterized by cognitive impairment, mood disturbances, or psychosis, such as Alzheimer's disease or schizophrenia. However, the brain-wide functional substrates engaged by muscarinic agonists remain poorly understood. Here we used a combination of pharmacological fMRI (phMRI), resting-state fMRI (rsfMRI), and resting-state quantitative EEG (qEEG) to investigate the effects of a behaviorally active dose of the M1/M4-preferring muscarinic agonist xanomeline on brain functional activity in the rodent brain. We investigated both the effects of xanomeline per se and its modulatory effects on signals elicited by the NMDA-receptor antagonists phencyclidine (PCP) and ketamine. We found that xanomeline induces robust and widespread BOLD signal phMRI amplitude increases and decreased high-frequency qEEG spectral activity. rsfMRI mapping in the mouse revealed that xanomeline robustly decreased neocortical and striatal connectivity but induces focal increases in functional connectivity within the nucleus accumbens and basal forebrain. Notably, xanomeline pre-administration robustly attenuated both the cortico-limbic phMRI response and the fronto-hippocampal hyper-connectivity induced by PCP, enhanced PCP-modulated functional connectivity locally within the nucleus accumbens and basal forebrain, and reversed the gamma and high-frequency qEEG power increases induced by ketamine. Collectively, these results show that xanomeline robustly induces both cholinergic-like neocortical activation and desynchronization of functional networks in the mammalian brain. These effects could serve as a translatable biomarker for future clinical investigations of muscarinic agents, and bear mechanistic relevance for the putative therapeutic effect of these class of compounds in brain disorders.


Assuntos
Agonistas Muscarínicos , Tiadiazóis , Animais , Hipocampo/metabolismo , Camundongos , Agonistas Muscarínicos/farmacologia , Piridinas , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M4/metabolismo
11.
Biochim Biophys Acta Proteins Proteom ; 1868(12): 140531, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32853769

RESUMO

BACKGROUND: Autism spectrum disorders (ASD) comprise a heterogeneous group of neurodevelopmental conditions characterized by impairment in social interaction, deviance in communication, and repetitive behaviors. Dysfunctional ionotropic NMDA and AMPA receptors, and metabotropic glutamate receptor 5 activity at excitatory synapses has been recently linked to multiple forms of ASD. Despite emerging evidence showing that d-aspartate and d-serine are important neuromodulators of glutamatergic transmission, no systematic investigation on the occurrence of these D-amino acids in preclinical ASD models has been carried out. METHODS: Through HPLC and qPCR analyses we investigated d-aspartate and d-serine metabolism in the brain and serum of four ASD mouse models. These include BTBR mice, an idiopathic model of ASD, and Cntnap2-/-, Shank3-/-, and 16p11.2+/- mice, three established genetic mouse lines recapitulating high confidence ASD-associated mutations. RESULTS: Biochemical and gene expression mapping in Cntnap2-/-, Shank3-/-, and 16p11.2+/- failed to find gross cerebral and serum alterations in d-aspartate and d-serine metabolism. Conversely, we found a striking and stereoselective increased d-aspartate content in the prefrontal cortex, hippocampus and serum of inbred BTBR mice. Consistent with biochemical assessments, in the same brain areas we also found a robust reduction in mRNA levels of d-aspartate oxidase, encoding the enzyme responsible for d-aspartate catabolism. CONCLUSIONS: Our results demonstrated the presence of disrupted d-aspartate metabolism in a widely used animal model of idiopathic ASD. GENERAL SIGNIFICANCE: Overall, this work calls for a deeper investigation of D-amino acids in the etiopathology of ASD and related developmental disorders.


Assuntos
Transtorno do Espectro Autista/metabolismo , Ácido D-Aspártico/metabolismo , Animais , Transtorno do Espectro Autista/etiologia , Biomarcadores , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Ácido D-Aspártico/sangue , Modelos Animais de Doenças , Expressão Gênica , Hipocampo/metabolismo , Camundongos , Camundongos Transgênicos , Córtex Pré-Frontal/metabolismo
12.
Neuroscience ; 445: 83-94, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31917352

RESUMO

Central release of the neuropeptide oxytocin (OXT) modulates neural substrates involved in socio-affective behavior. This property has prompted research into the use of intranasal OXT administration as an adjunctive therapy for brain conditions characterized by social impairment, such as autism spectrum disorders (ASD). However, the neural circuitry and brain-wide functional networks recruited by intranasal OXT administration remain elusive. Moreover, little is known of the neuroadaptive cascade triggered by long-term administration of this peptide at the network level. To address these questions, we applied fMRI-based circuit mapping in adult mice upon acute and repeated (seven-day) intranasal dosing of OXT. We report that acute and chronic OXT administration elicit comparable fMRI activity as assessed with cerebral blood volume mapping, but entail largely different patterns of brain-wide functional connectivity. Specifically, acute OXT administration focally boosted connectivity within key limbic components of the rodent social brain, whereas repeated dosing led to a prominent and widespread increase in functional connectivity, involving a strong coupling between the amygdala and extended cortical territories. Importantly, this connectional reconfiguration was accompanied by a paradoxical reduction in social interaction and communication in wild-type mice. Our results identify the network substrates engaged by exogenous OXT administration, and show that repeated OXT dosing leads to a substantial reconfiguration of brain-wide connectivity, entailing an aberrant functional coupling between cortico-limbic structures involved in socio-communicative and affective functions. Such divergent patterns of network connectivity might contribute to discrepant clinical findings involving acute or long-term OXT dosing in clinical populations.


Assuntos
Encéfalo , Ocitocina , Administração Intranasal , Tonsila do Cerebelo , Animais , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Camundongos
13.
J Neurosci ; 39(27): 5299-5310, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31061091

RESUMO

Mutations in the synaptic scaffolding protein SHANK3 are a major cause of autism and are associated with prominent intellectual and language deficits. However, the neural mechanisms whereby SHANK3 deficiency affects higher-order socio-communicative functions remain unclear. Using high-resolution functional and structural MRI in adult male mice, here we show that loss of Shank3 (Shank3B-/-) results in disrupted local and long-range prefrontal and frontostriatal functional connectivity. We document that prefrontal hypoconnectivity is associated with reduced short-range cortical projections density, and reduced gray matter volume. Finally, we show that prefrontal disconnectivity is predictive of social communication deficits, as assessed with ultrasound vocalization recordings. Collectively, our results reveal a critical role of SHANK3 in the development of prefrontal anatomy and function, and suggest that SHANK3 deficiency may predispose to intellectual disability and socio-communicative impairments via dysregulation of higher-order cortical connectivity.SIGNIFICANCE STATEMENT Mutations in the synaptic scaffolding protein SHANK3 are commonly associated with autism, intellectual, and language deficits. Previous research has linked SHANK3 deficiency to basal ganglia dysfunction, motor stereotypies, and social deficits. However, the neural mechanism whereby Shank3 gene mutations affects cortical functional connectivity and higher-order socio-communicative functions remain unclear. Here we show that loss of SHANK3 in mice results in largely disrupted functional connectivity and abnormal gray matter anatomy in prefrontal areas. We also show that prefrontal connectivity disruption is tightly linked to socio-communicative deficits. Our findings suggest that SHANK3 is a critical orchestrator of frontocortical function, and that disrupted connectivity of prefrontal areas may underpin socio-communicative impairments observed in SHANK3 mutation carriers.


Assuntos
Transtorno do Espectro Autista/genética , Proteínas do Tecido Nervoso/fisiologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Vocalização Animal/fisiologia , Animais , Mapeamento Encefálico , Modelos Animais de Doenças , Predisposição Genética para Doença , Substância Cinzenta/crescimento & desenvolvimento , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética , Masculino , Camundongos Knockout , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/genética , Córtex Pré-Frontal/patologia , Comportamento Social
14.
J Neurosci ; 39(8): 1525-1538, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30593497

RESUMO

Overreactivity and defensive behaviors in response to tactile stimuli are common symptoms in autism spectrum disorder (ASD) patients. Similarly, somatosensory hypersensitivity has also been described in mice lacking ASD-associated genes such as Fmr1 (fragile X mental retardation protein 1). Fmr1 knock-out mice also show reduced functional connectivity between sensory cortical areas, which may represent an endogenous biomarker for their hypersensitivity. Here, we measured whole-brain functional connectivity in Engrailed-2 knock-out (En2-/-) adult mice, which show a lower expression of Fmr1 and anatomical defects common to Fmr1 knock-outs. MRI-based resting-state functional connectivity in adult En2-/- mice revealed significantly reduced synchronization in somatosensory-auditory/associative cortices and dorsal thalamus, suggesting the presence of aberrant somatosensory processing in these mutants. Accordingly, when tested in the whisker nuisance test, En2-/- but not WT mice of both sexes showed fear behavior in response to repeated whisker stimulation. En2-/- mice undergoing this test exhibited decreased c-Fos-positive neurons (a marker of neuronal activity) in layer IV of the primary somatosensory cortex and increased immunoreactive cells in the basolateral amygdala compared with WT littermates. Conversely, when tested in a sensory maze, En2-/- and WT mice spent a comparable time in whisker-guided exploration, indicating that whisker-mediated behaviors are otherwise preserved in En2 mutants. Therefore, fearful responses to somatosensory stimuli in En2-/- mice are accompanied by reduced basal connectivity of sensory regions, reduced activation of somatosensory cortex, and increased activation of the basolateral amygdala, suggesting that impaired somatosensory processing is a common feature in mice lacking ASD-related genes.SIGNIFICANCE STATEMENT Overreactivity to tactile stimuli is a common symptom in autism spectrum disorder (ASD) patients. Recent studies performed in mice bearing ASD-related mutations confirmed these findings. Here, we evaluated the behavioral response to whisker stimulation in mice lacking the ASD-related gene Engrailed-2 (En2-/- mice). Compared with WT controls, En2-/- mice showed reduced functional connectivity in the somatosensory cortex, which was paralleled by fear behavior, reduced activation of somatosensory cortex, and increased activation of the basolateral amygdala in response to repeated whisker stimulation. These results suggest that impaired somatosensory signal processing is a common feature in mice harboring ASD-related mutations.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Medo/fisiologia , Proteínas do Tecido Nervoso/deficiência , Córtex Somatossensorial/fisiopatologia , Vibrissas/fisiologia , Animais , Transtorno do Espectro Autista/psicologia , Complexo Nuclear Basolateral da Amígdala/diagnóstico por imagem , Complexo Nuclear Basolateral da Amígdala/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Conectoma , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Comportamento Alimentar/fisiologia , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Proteínas Proto-Oncogênicas c-fos/análise , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/patologia , Tálamo/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
15.
Sci Rep ; 8(1): 11847, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087403

RESUMO

Abnormal hippocampal neural plasticity has been implicated in behavioural abnormalities and complex neuropsychiatric conditions, including bipolar disorder (BD). However, the determinants of this neural alteration remain unknown. This work tests the hypothesis that the neurotransmitter serotonin (5-HT) is a key determinant of hippocampal neuroplasticity, and its absence leads to maladaptive behaviour relevant for BD. Depletion of brain 5-HT in Tph2 mutant mice resulted in reduced behavioural despair, reduced anxiety, marked aggression and lower habituation in novel environments, reminiscent of bipolar-associated manic behaviour. Treatment with valproate produced a substantial improvement of the mania-like behavioural phenotypes displayed by Tph2 mutants. Brain-wide fMRI mapping in mutants revealed functional hippocampal hyperactivity in which we also observed dramatically increased neuroplasticity. Importantly, remarkable correspondence between the transcriptomic profile of the Tph2 mutant hippocampus and neurons from bipolar disorder patients was observed. Chronic stress reversed the emotional phenotype and the hippocampal transcriptional landscape of Tph2 mutants. These changes were associated with inappropriate activation of transcriptional adaptive response to stress as assessed by gene set enrichment analyses in the hippocampus of Tph2 mutant mice. These findings delineate 5-HT as a critical determinant in BD associated maladaptive emotional responses and aberrant hippocampal neuroplasticity, and support the use of Tph2-/- mice as a new research tool for mechanistic and therapeutic research in bipolar disorder.


Assuntos
Transtorno Bipolar/prevenção & controle , Hipocampo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Serotonina/metabolismo , Triptofano Hidroxilase/metabolismo , Ácido Valproico/farmacologia , Animais , Anticonvulsivantes/farmacologia , Ansiedade/genética , Ansiedade/fisiopatologia , Ansiedade/prevenção & controle , Transtorno Bipolar/genética , Transtorno Bipolar/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Perfilação da Expressão Gênica/métodos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Triptofano Hidroxilase/genética
16.
Brain ; 141(7): 2055-2065, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29722793

RESUMO

Human genetic studies are rapidly identifying variants that increase risk for neurodevelopmental disorders. However, it remains unclear how specific mutations impact brain function and contribute to neuropsychiatric risk. Chromosome 16p11.2 deletion is one of the most common copy number variations in autism and related neurodevelopmental disorders. Using resting state functional MRI data from the Simons Variation in Individuals Project (VIP) database, we show that 16p11.2 deletion carriers exhibit impaired prefrontal connectivity, resulting in weaker long-range functional coupling with temporal-parietal regions. These functional changes are associated with socio-cognitive impairments. We also document that a mouse with the same genetic deficiency exhibits similarly diminished prefrontal connectivity, together with thalamo-prefrontal miswiring and reduced long-range functional synchronization. These results reveal a mechanistic link between specific genetic risk for neurodevelopmental disorders and long-range functional coupling, and suggest that deletion in 16p11.2 may lead to impaired socio-cognitive function via dysregulation of prefrontal connectivity.


Assuntos
Transtorno Autístico/genética , Transtornos Cromossômicos/genética , Deficiência Intelectual/genética , Rede Nervosa/fisiologia , Adolescente , Animais , Transtorno Autístico/fisiopatologia , Transtorno Autístico/psicologia , Criança , Deleção Cromossômica , Transtornos Cromossômicos/fisiopatologia , Cromossomos Humanos Par 16/genética , Cognição/fisiologia , Disfunção Cognitiva/complicações , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Feminino , Humanos , Deficiência Intelectual/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Masculino , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Transtornos do Neurodesenvolvimento/genética , Córtex Pré-Frontal/fisiologia , Lobo Temporal/fisiopatologia
17.
Cereb Cortex ; 28(6): 2192-2206, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29668850

RESUMO

Truncating CHD8 mutations are amongst the highest confidence risk factors for autism spectrum disorder (ASD) identified to date. Here, we report that Chd8 heterozygous mice display increased brain size, motor delay, hypertelorism, pronounced hypoactivity, and anomalous responses to social stimuli. Whereas gene expression in the neocortex is only mildly affected at midgestation, over 600 genes are differentially expressed in the early postnatal neocortex. Genes involved in cell adhesion and axon guidance are particularly prominent amongst the downregulated transcripts. Resting-state functional MRI identified increased synchronized activity in cortico-hippocampal and auditory-parietal networks in Chd8 heterozygous mutant mice, implicating altered connectivity as a potential mechanism underlying the behavioral phenotypes. Together, these data suggest that altered brain growth and diminished expression of important neurodevelopmental genes that regulate long-range brain wiring are followed by distinctive anomalies in functional brain connectivity in Chd8+/- mice. Human imaging studies have reported altered functional connectivity in ASD patients, with long-range under-connectivity seemingly more frequent. Our data suggest that CHD8 haploinsufficiency represents a specific subtype of ASD where neuropsychiatric symptoms are underpinned by long-range over-connectivity.


Assuntos
Encéfalo/fisiopatologia , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Vias Neurais/fisiopatologia , Animais , Transtorno do Espectro Autista/genética , Modelos Animais de Doenças , Haploinsuficiência , Camundongos , Camundongos Knockout , Neocórtex/metabolismo , Transcriptoma
18.
Cereb Cortex ; 28(4): 1141-1153, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28184409

RESUMO

Functional connectivity aberrancies, as measured with resting-state functional magnetic resonance imaging (rsfMRI), have been consistently observed in the brain of autism spectrum disorders (ASD) patients. However, the genetic and neurobiological underpinnings of these findings remain unclear. Homozygous mutations in contactin associated protein-like 2 (CNTNAP2), a neurexin-related cell-adhesion protein, are strongly linked to autism and epilepsy. Here we used rsfMRI to show that homozygous mice lacking Cntnap2 exhibit reduced long-range and local functional connectivity in prefrontal and midline brain "connectivity hubs." Long-range rsfMRI connectivity impairments affected heteromodal cortical regions and were prominent between fronto-posterior components of the mouse default-mode network, an effect that was associated with reduced social investigation, a core "autism trait" in mice. Notably, viral tracing revealed reduced frequency of prefrontal-projecting neural clusters in the cingulate cortex of Cntnap2-/- mutants, suggesting a possible contribution of defective mesoscale axonal wiring to the observed functional impairments. Macroscale cortico-cortical white-matter organization appeared to be otherwise preserved in these animals. These findings reveal a key contribution of ASD-associated gene CNTNAP2 in modulating macroscale functional connectivity, and suggest that homozygous loss-of-function mutations in this gene may predispose to neurodevelopmental disorders and autism through a selective dysregulation of connectivity in integrative prefrontal areas.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/patologia , Proteínas de Membrana/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Córtex Pré-Frontal/diagnóstico por imagem , Substância Branca/fisiopatologia , Animais , Transtorno Autístico/psicologia , Mapeamento Encefálico , Imagem de Difusão por Ressonância Magnética , Modelos Animais de Doenças , Feminino , Processamento de Imagem Assistida por Computador , Relações Interpessoais , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Imageamento por Ressonância Magnética , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Oxigênio/sangue , Transdução Genética , Substância Branca/diagnóstico por imagem , Proteína Vermelha Fluorescente
19.
Cell Rep ; 21(4): 910-918, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29069598

RESUMO

Serotonin-producing neurons profusely innervate brain regions via long-range projections. However, it remains unclear whether and how endogenous serotonergic transmission specifically influences regional or global functional activity. We combined designed receptors exclusively activated by designed drugs (DREADD)-based chemogenetics and functional magnetic resonance imaging (fMRI), an approach we term "chemo-fMRI," to causally probe the brain-wide substrates modulated by endogenous serotonergic activity. We describe the generation of a conditional knockin mouse line that, crossed with serotonin-specific Cre-recombinase mice, allowed us to remotely stimulate serotonergic neurons during fMRI scans. We show that endogenous stimulation of serotonin-producing neurons does not affect global brain activity but results in region-specific activation of a set of primary target regions encompassing corticohippocampal and ventrostriatal areas. By contrast, pharmacological boosting of serotonin levels produced widespread fMRI deactivation, plausibly reflecting the mixed contribution of central and perivascular constrictive effects. Our results identify the primary functional targets of endogenous serotonergic stimulation and establish causation between activation of serotonergic neurons and regional fMRI signals.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Neurônios Serotoninérgicos/fisiologia , Transmissão Sináptica , Animais , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Serotoninérgicos/efeitos dos fármacos , Neurônios Serotoninérgicos/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacocinética , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
20.
Cereb Cortex ; 27(10): 5014-5023, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28922833

RESUMO

Autism spectrum disorders (ASD) and epilepsy are neurodevelopmental conditions that appear with high rate of co-occurrence, suggesting the possibility of a common genetic basis. Mutations in Synapsin (SYN) genes, particularly SYN1 and SYN2, have been recently associated with ASD and epilepsy in humans. Accordingly, mice lacking Syn1 or Syn2, but not Syn3, experience epileptic seizures and display autistic-like traits that precede the onset of seizures. Here, we analyzed social behavior and ultrasonic vocalizations emitted in 2 social contexts by SynI, SynII, or SynIII mutants and show that SynII mutants display the most severe ASD-like phenotype. We also show that the behavioral SynII phenotype correlates with a significant decrease in auditory and hippocampal functional connectivity as measured with resting state functional magnetic resonance imaging (rsfMRI). Taken together, our results reveal a permissive contribution of Syn2 to the expression of normal socio-communicative behavior, and suggest that Syn2-mediated synaptic dysfunction can lead to ASD-like behavior through dysregulation of cortical connectivity.


Assuntos
Transtorno do Espectro Autista/metabolismo , Hipocampo/metabolismo , Comportamento Social , Sinapsinas/metabolismo , Animais , Transtorno do Espectro Autista/genética , Comportamento Animal , Concussão Encefálica/fisiopatologia , Epilepsia/fisiopatologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Sinapsinas/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...