Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Methods Mol Biol ; 2770: 27-36, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38351444

RESUMO

Preservation of human spermatogonial stem cells (SSCs) may be suitable for young male patients at risk of male infertility due to various causes, such as gonadotoxic treatment or genetic diseases. With optimal cryopreservation, cell viability can be retained to reestablish spermatogenesis in the future through autologous transplantation or in vitro differentiation of SSCs. This protocol outlines techniques to optimize the SSCs isolation and in vitro culture. With particular emphasis on the microscopic characteristics encountered, this protocol outlines a broader approach to processing tissues with varying morphologies among patients.


Assuntos
Células-Tronco Germinativas Adultas , Infertilidade Masculina , Humanos , Masculino , Espermatogônias , Espermatogênese , Criopreservação/métodos , Testículo
2.
Front Endocrinol (Lausanne) ; 13: 1002279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246909

RESUMO

Klinefelter Syndrome (KS) is characterized by a masculine phenotype, supernumerary sex chromosomes (47, XXY), and impaired fertility due to loss of spermatogonial stem cells (SSCs). Early testicular cryopreservation could be an option for future fertility treatments in these patients, including SSCs transplantation or in vitro spermatogenesis. It is critically essential to adapt current in vitro SSCs propagation systems as a fertility option for KS patients. KS human testicular samples (13,15- and 17-year-old non-mosaic KS boys) were donated by patients enrolled in an experimental testicular tissue banking program. Testicular cells were isolated from cryopreserved tissue and propagated in long-term culture for 110 days. Cell-specific gene expression confirmed the presence of all four main cell types found in testes: Spermatogonia, Sertoli, Leydig, and Peritubular cells. A population of ZBTB16+ undifferentiated spermatogonia was identified throughout the culture using digital PCR. Flow cytometric analysis also detected an HLA-/CD9+/CD49f+ population, indicating maintenance of a stem cell subpopulation among the spermatogonial cells. FISH staining for chromosomes X and Y showed most cells containing an XXY karyotype with a smaller number containing either XY or XX. Both XY and XX populations were able to be enriched by magnetic sorting for CD9 as a spermatogonia marker. Molecular karyotyping demonstrated genomic stability of the cultured cells, over time. Finally, single-cell RNAseq analysis confirmed transcription of ID4, TCN2, and NANOS 3 within a population of putative SSCs population. This is the first study showing successful isolation and long-term in vitro propagation of human KS testicular cells. These findings could inform the development of therapeutic fertility options for KS patients, either through in vitro spermatogenesis or transplantation of SSC, in vivo.


Assuntos
Síndrome de Klinefelter , Espermatogônias , Adolescente , Humanos , Integrina alfa6/metabolismo , Síndrome de Klinefelter/genética , Síndrome de Klinefelter/metabolismo , Masculino , Espermatogênese/genética , Espermatogônias/metabolismo , Células-Tronco , Testículo/metabolismo
4.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35008599

RESUMO

Klinefelter syndrome (KS) is characterized by a masculine phenotype, supernumerary sex chromosomes (usually XXY), and spermatogonial stem cell (SSC) loss in their early life. Affecting 1 out of every 650 males born, KS is the most common genetic cause of male infertility, and new fertility preservation strategies are critically important for these patients. In this study, testes from 41, XXY prepubertal (3-day-old) mice were frozen-thawed. Isolated testicular cells were cultured and characterized by qPCR, digital PCR, and flow cytometry analyses. We demonstrated that SSCs survived and were able to be propagated with testicular somatic cells in culture for up to 120 days. DNA fluorescent in situ hybridization (FISH) showed the presence of XXY spermatogonia at the beginning of the culture and a variety of propagated XY, XX, and XXY spermatogonia at the end of the culture. These data provide the first evidence that an extra sex chromosome was lost during innate SSC culture, a crucial finding in treating KS patients for preserving and propagating SSCs for future sperm production, either in vitro or in vivo. This in vitro propagation system can be translated to clinical fertility preservation for KS patients.


Assuntos
Criopreservação , Preservação da Fertilidade , Síndrome de Klinefelter , Preservação do Sêmen , Espermatogônias , Animais , Modelos Animais de Doenças , Masculino , Camundongos
5.
Hum Reprod Update ; 26(1): 58-72, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31822886

RESUMO

BACKGROUND: Klinefelter syndrome (KS) has been defined by sex chromosome aneuploidies (classically 47, XXY) in the male patient. The peripubertal timeframe in KS patients has been associated with the initiation of progressive testicular fibrosis, loss of spermatogonial stem cells (SSC), hypogonadism and impaired fertility. Less than half of KS patients are positive for spermatozoa in the ejaculate or testis via semen analysis or testicular sperm extraction, respectively. However, the chance of finding spermatogonia including a sub-population of SSCs in KS testes has not been well defined. Given the recent demonstration of successful cell culture for mouse and human SSCs, it could be feasible to isolate and propagate SSCs and transplant the cells back to the patient or to differentiate them in vitro to haploid cells. OBJECTIVE AND RATIONALE: The main objective of this study was to meta-analyse the currently available data from KS patients to identify the prevalence of KS patients with spermatogonia on testicular biopsy across four age groups (year): fetal/infantile (age ≤ 1), prepubertal (age 1 ≤ x ≤ 10), peripubertal/adolescent (age 10 < x < 18) and adult (age ≥ 18) ages. Additionally, the association of endocrine parameters with presence or absence of spermatogonia was tested to obtain a more powered analysis of whether FSH, LH, testosterone and inhibin B can serve as predictive markers for successful spermatogonia retrieval. SEARCH METHODS: A thorough Medline/PubMed search was conducted using the following search terms: 'Klinefelter, germ cells, spermatogenesis and spermatogonia', yielding results from 1 October 1965 to 3 February 2019. Relevant articles were added from the bibliographies of selected articles. Exclusion criteria included non-English language, abstracts only, non-human data and review papers. OUTCOMES: A total of 751 papers were identified with independent review returning 36 papers with relevant information for meta-analysis on 386 patients. For the most part, articles were case reports, case-controlled series and cohort studies (level IV-VI evidence). Spermatogonial cells were present in all of the fetal/infantile and 83% of the prepubertal patients' testes, and in 42.7% and 48.5% of the peripubertal and adult groups, respectively were positive for spermatogonia. Additionally, 26 of the 56 (46.4%) peripubertal/adolescent and 37 of the 152 (24.3%) adult patients negative for spermatozoa were positive for spermatogonia (P < 0.05). In peripubertal/adolescent patients, the mean ± SEM level for FSH was 12.88 ± 3.13 IU/L for spermatogonia positive patients and 30.42 ± 4.05 IU/L for spermatogonia negative patients (P = 0.001); the mean ± SEM level LH levels were 4.36 ± 1.31 and 11.43 ± 1.68 IU/L for spermatogonia positive and negative, respectively (P < 0.01); the mean ± SEM level for testosterone levels were 5.04 ± 1.37 and 9.05 ± 0.94 nmol/L (equal to 145 ± 40 and 261 ± 27 and ng/dl) for the spermatogonia positive and negative groups, respectively (P < 0.05), while the difference in means for inhibin B was not statistically significant (P > 0.05). A similar analysis in the adult group showed the FSH levels in spermatogonia positive and negative patients to be 25.77 ± 2.78 and 36.12 ± 2.90 IU/L, respectively (mean ± SEM level, P < 0.05). All other hormone measurements were not statistically significantly different between groups. WIDER IMPLICATIONS: While azoospermia is a common finding in the KS patient population, many patients are positive for spermatogonia. Recent advances in SSC in vitro propagation, transplantation and differentiation open new avenues for these patients for fertility preservation. This would offer a new subset of KS patients a chance of biological paternity. Data surrounding the hormonal profiles of KS patients and their relation to fertility should be interpreted with caution as a paucity of adequately powered data exists. Future work is needed to clarify the utility of FSH, LH, testosterone and inhibin B as biomarkers for successful retrieval of spermatogonia.


Assuntos
Hormônio Foliculoestimulante/análise , Inibinas/análise , Síndrome de Klinefelter/fisiopatologia , Hormônio Luteinizante/análise , Espermatogônias/fisiologia , Testosterona/análise , Adolescente , Adulto , Azoospermia/fisiopatologia , Biomarcadores/análise , Criança , Pré-Escolar , Estudos de Coortes , Fertilidade , Preservação da Fertilidade , Humanos , Hipogonadismo/complicações , Lactente , Masculino , Análise do Sêmen , Recuperação Espermática , Espermatogênese , Espermatozoides/patologia , Testículo/citologia , Adulto Jovem
6.
Stem Cells Cloning ; 11: 23-38, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013372

RESUMO

While the survival rate of children with cancer is increasing, preserving fertility for prepubertal boys is still a challenge. Although intracytoplasmic sperm injection (ICSI) using frozen sperms has revolutionized infertility treatment, it is not applicable for the patients who undergo chemotherapy before puberty since spermatogenesis has not begun. Therefore, preserving spermatogonial stem cells (SSCs) as an experimental option can be provided to prepubertal patients at a risk of damage or loss of their SSCs due to cancer treatments and developmental or genetic disorders. Using frozen SSCs in testicular tissue, successful SSC autotransplantation in mouse and nonhuman primates has shown a promising future for SSC-based cell therapy. Cryopreservation of testicular tissue containing SSCs is the first step to translate SSC-based cell therapy into clinical male infertility treatment, and in the investigation into SSCs, it is very important to evaluate their quantity and functionality during this process. This systematic review summarizes the published data on cryopreservation techniques in human testis tissue for potential utilization in future clinical applications.

7.
Curr Urol Rep ; 17(7): 49, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27107595

RESUMO

Male infertility affects 7 % of the male population, and 10 % of infertile men are azoospermic. In these instances, using microsurgical testicular sperm extraction (m-TESE) and intra-cytoplasmic sperm injection (ICSI) helps a significant number of patients. However, in vitro differentiation of diploid germ cells to mature haploid germ cell has the potential to benefit many others, including pediatric cancer survivors who have previously cryopreserved their immature testicular tissue prior to starting gonadotoxic cancer treatment as well as men with spermatogenic arrest. This systematic review evaluates and summarizes half a century of researchers' efforts towards achieving in vitro spermatogenesis in mammalian species. A myriad of experimental assays and approaches has been developed using whole testis tissue or separated single cells from testis in two- or three-dimensional cell culture systems (2D versus 3D). Recent advances in the mammalian in vitro spermatogenesis, particularly in murine and nonhuman primate systems, hold promise towards translating the availability of in vitro spermatogenesis models in the human clinical setting in the near future.


Assuntos
Medicina Regenerativa/tendências , Espermatogênese , Animais , Técnicas de Cultura de Células , Humanos , Infertilidade Masculina , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...