Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(9): eadj3864, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416829

RESUMO

Wall teichoic acid (WTA), a covalent adduct of Gram-positive bacterial cell wall peptidoglycan, contributes directly to virulence and antibiotic resistance in pathogenic species. Polymerization of the Staphylococcus aureus WTA ribitol-phosphate chain is catalyzed by TarL, a member of the largely uncharacterized TagF-like family of membrane-associated enzymes. We report the cryo-electron microscopy structure of TarL, showing a tetramer that forms an extensive membrane-binding platform of monotopic helices. TarL is composed of an amino-terminal immunoglobulin-like domain and a carboxyl-terminal glycosyltransferase-B domain for ribitol-phosphate polymerization. The active site of the latter is complexed to donor substrate cytidine diphosphate-ribitol, providing mechanistic insights into the catalyzed phosphotransfer reaction. Furthermore, the active site is surrounded by electropositive residues that serve to retain the lipid-linked acceptor for polymerization. Our data advance general insight into the architecture and membrane association of the still poorly characterized monotopic membrane protein class and present molecular details of ribitol-phosphate polymerization that may aid in the design of new antimicrobials.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Microscopia Crioeletrônica , Staphylococcus aureus Resistente à Meticilina/metabolismo , Virulência , Ribitol/metabolismo , Ácidos Teicoicos/análise , Ácidos Teicoicos/química , Ácidos Teicoicos/metabolismo , Fosfatos/metabolismo , Resistência Microbiana a Medicamentos
2.
J Struct Biol ; 213(2): 107733, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33819634

RESUMO

The cell wall of many pathogenic Gram-positive bacteria contains ribitol-phosphate wall teichoic acid (WTA), a polymer that is linked to virulence and regulation of essential physiological processes including cell division. CDP-ribitol, the activated precursor for ribitol-phosphate polymerization, is synthesized by a cytidylyltransferase and reductase pair known as TarI and TarJ, respectively. In this study, we present crystal structures of Staphylococcus aureus TarI and TarJ in their apo forms and in complex with substrates and products. The TarI structures illustrate the mechanism of CDP-ribitol synthesis from CTP and ribitol-phosphate and reveal structural changes required for substrate binding and catalysis. Insights into the upstream step of ribulose-phosphate reduction to ribitol-phosphate is provided by the structures of TarJ. Furthermore, we propose a general topology of the enzymes in a heterotetrameric form built using restraints from crosslinking mass spectrometry analysis. Together, our data present molecular details of CDP-ribitol production that may aid in the design of inhibitors against WTA biosynthesis.


Assuntos
Açúcares de Nucleosídeo Difosfato/biossíntese , Nucleotidiltransferases/química , Oxirredutases/química , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Parede Celular/metabolismo , Cristalografia por Raios X , Espectrometria de Massas/métodos , Modelos Moleculares , Mutação , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Oxirredutases/metabolismo , Pentosefosfatos/metabolismo , Multimerização Proteica , Ribulosefosfatos/metabolismo , Staphylococcus aureus/citologia , Staphylococcus aureus/enzimologia
3.
ACS Infect Dis ; 6(3): 338-346, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32017534

RESUMO

The spread of antimicrobial resistance continues to be a priority health concern worldwide, necessitating the exploration of alternative therapies. Cannabis sativa has long been known to contain antibacterial cannabinoids, but their potential to address antibiotic resistance has only been superficially investigated. Here, we show that cannabinoids exhibit antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), inhibit its ability to form biofilms, and eradicate preformed biofilms and stationary phase cells persistent to antibiotics. We show that the mechanism of action of cannabigerol is through targeting the cytoplasmic membrane of Gram-positive bacteria and demonstrate in vivo efficacy of cannabigerol in a murine systemic infection model caused by MRSA. We also show that cannabinoids are effective against Gram-negative organisms whose outer membrane is permeabilized, where cannabigerol acts on the inner membrane. Finally, we demonstrate that cannabinoids work in combination with polymyxin B against multidrug resistant Gram-negative pathogens, revealing the broad-spectrum therapeutic potential for cannabinoids.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Canabinoides/farmacologia , Cannabis/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Antibacterianos/química , Membrana Celular/efeitos dos fármacos , Feminino , Bactérias Gram-Negativas/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Polimixina B/farmacologia , Infecções Estafilocócicas/sangue , Infecções Estafilocócicas/tratamento farmacológico
4.
J Biol Chem ; 295(9): 2629-2639, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31969390

RESUMO

Gram-positive bacteria, including major clinical pathogens such as Staphylococcus aureus, are becoming increasingly drug-resistant. Their cell walls are composed of a thick layer of peptidoglycan (PG) modified by the attachment of wall teichoic acid (WTA), an anionic glycopolymer that is linked to pathogenicity and regulation of cell division and PG synthesis. The transfer of WTA from lipid carriers to PG, catalyzed by the LytR-CpsA-Psr (LCP) enzyme family, offers a unique extracellular target for the development of new anti-infective agents. Inhibitors of LCP enzymes have the potential to manage a wide range of bacterial infections because the target enzymes are implicated in the assembly of many other bacterial cell wall polymers, including capsular polysaccharide of streptococcal species and arabinogalactan of mycobacterial species. In this study, we present the first crystal structure of S. aureus LcpA with bound substrate at 1.9 Å resolution and those of Bacillus subtilis LCP enzymes, TagT, TagU, and TagV, in the apo form at 1.6-2.8 Å resolution. The structures of these WTA transferases provide new insight into the binding of lipid-linked WTA and enable assignment of the catalytic roles of conserved active-site residues. Furthermore, we identified potential subsites for binding the saccharide core of PG using computational docking experiments, and multiangle light-scattering experiments disclosed novel oligomeric states of the LCP enzymes. The crystal structures and modeled substrate-bound complexes of the LCP enzymes reported here provide insights into key features linked to substrate binding and catalysis and may aid the structure-guided design of specific LCP inhibitors.


Assuntos
Cristalografia por Raios X , Ligases/química , Staphylococcus aureus/enzimologia , Ácidos Teicoicos/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Parede Celular/química , Ligases/metabolismo , Estrutura Molecular , Peptidoglicano/biossíntese , Peptidoglicano/metabolismo , Ligação Proteica
5.
PLoS Pathog ; 15(4): e1007723, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31002736

RESUMO

Staphylococcus aureus and other bacterial pathogens affix wall teichoic acids (WTAs) to their surface. These highly abundant anionic glycopolymers have critical functions in bacterial physiology and their susceptibility to ß-lactam antibiotics. The membrane-associated TagA glycosyltransferase (GT) catalyzes the first-committed step in WTA biosynthesis and is a founding member of the WecB/TagA/CpsF GT family, more than 6,000 enzymes that synthesize a range of extracellular polysaccharides through a poorly understood mechanism. Crystal structures of TagA from T. italicus in its apo- and UDP-bound states reveal a novel GT fold, and coupled with biochemical and cellular data define the mechanism of catalysis. We propose that enzyme activity is regulated by interactions with the bilayer, which trigger a structural change that facilitates proper active site formation and recognition of the enzyme's lipid-linked substrate. These findings inform upon the molecular basis of WecB/TagA/CpsF activity and could guide the development of new anti-microbial drugs.


Assuntos
Proteínas de Bactérias/química , Parede Celular/metabolismo , Lipoproteínas/química , Staphylococcus aureus/enzimologia , Ácidos Teicoicos/metabolismo , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Lipoproteínas/metabolismo , Modelos Moleculares , Multimerização Proteica , Estrutura Terciária de Proteína
6.
Cell Chem Biol ; 24(12): 1537-1546.e4, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29107701

RESUMO

Gram-positive bacteria endow their peptidoglycan with glycopolymers that are crucial for viability and pathogenesis. However, the cellular machinery that executes this function is not well understood. While decades of genetic and phenotypic work have highlighted the LytR-CpsA-Psr (LCP) family of enzymes as cell-wall glycopolymer transferases, their in vitro characterization has been elusive, largely due to a paucity of tools for functional assays. In this report, we synthesized authentic undecaprenyl diphosphate-linked wall teichoic acid (WTA) intermediates and built an assay system capable of monitoring LCP-mediated glycopolymer transfer. We report that all Bacillus subtilis LCP enzymes anchor WTAs to peptidoglycan in vitro. Furthermore, we probed the catalytic requirements and substrate preferences for these LCP enzymes and elaborated in vitro conditions for facile tests of enzyme function. This work sheds light on the molecular features of glycopolymer transfer and aims to aid drug discovery and development programs exploiting this promising antibacterial target.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Difosfatos/metabolismo , Peptidoglicano/metabolismo , Ácidos Teicoicos/metabolismo , Bacillus subtilis/citologia , Biocatálise , Difosfatos/química , Estrutura Molecular , Peptidoglicano/química , Ácidos Teicoicos/química
7.
PLoS Pathog ; 12(12): e1006067, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27973583

RESUMO

In recent years, there has been a growing interest in teichoic acids as targets for antibiotic drug design against major clinical pathogens such as Staphylococcus aureus, reflecting the disquieting increase in antibiotic resistance and the historical success of bacterial cell wall components as drug targets. It is now becoming clear that ß-O-GlcNAcylation of S. aureus wall teichoic acids plays a major role in both pathogenicity and antibiotic resistance. Here we present the first structure of S. aureus TarS, the enzyme responsible for polyribitol phosphate ß-O-GlcNAcylation. Using a divide and conquer strategy, we obtained crystal structures of various TarS constructs, mapping high resolution overlapping N-terminal and C-terminal structures onto a lower resolution full-length structure that resulted in a high resolution view of the entire enzyme. Using the N-terminal structure that encapsulates the catalytic domain, we furthermore captured several snapshots of TarS, including the native structure, the UDP-GlcNAc donor complex, and the UDP product complex. These structures along with structure-guided mutants allowed us to elucidate various catalytic features and identify key active site residues and catalytic loop rearrangements that provide a valuable platform for anti-MRSA drug design. We furthermore observed for the first time the presence of a trimerization domain composed of stacked carbohydrate binding modules, commonly observed in starch active enzymes, but adapted here for a poly sugar-phosphate glycosyltransferase.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Parede Celular , Cromatografia Líquida , Cristalografia por Raios X , Espectrometria de Massas , Resistência a Meticilina/fisiologia , Staphylococcus aureus Resistente à Meticilina/química , Estabilidade Proteica , Estrutura Quaternária de Proteína , Ácidos Teicoicos/metabolismo
8.
Curr Opin Microbiol ; 27: 69-77, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26291270

RESUMO

Some of the most successful drugs in the antibiotic pharmacopeia are those that inhibit bacterial cell wall biosynthesis. However, the worldwide spread of bacterial antibiotic resistance has eroded the clinical efficacy of these drugs and the antibiotic pipeline continues to be lean as drug discovery programs struggle to bring new agents to the clinic. Nevertheless, cell wall biogenesis remains a high interest and celebrated target. Recent advances in the preparation of chemical probes and biosynthetic intermediates provide the tools necessary to better understand cell wall assembly. Likewise, these tools offer new opportunities to identify and evaluate novel biosynthetic inhibitors. This review aims to highlight these advancements and to provide context for their utility as innovative new tools to study cell wall biogenesis and for antibacterial drug discovery.


Assuntos
Antibacterianos/farmacologia , Bactérias/metabolismo , Parede Celular/metabolismo , Descoberta de Drogas/métodos , Peptidoglicano/biossíntese , Ácidos Teicoicos/biossíntese , Bactérias/efeitos dos fármacos , Bactérias/ultraestrutura , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Farmacorresistência Bacteriana , Sondas Moleculares
9.
Mol Microbiol ; 94(6): 1242-59, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25315493

RESUMO

The PhoPR two-component signal transduction system controls one of the major responses to phosphate limitation in Bacillus subtilis. When activated it directs expression of phosphate scavenging enzymes, lowers synthesis of the phosphate-rich wall teichoic acid (WTA) and initiates synthesis of teichuronic acid, a non-phosphate containing replacement anionic polymer. Despite extensive knowledge of this response, the signal to which PhoR responds has not been identified. Here we report that one of the main functions of the PhoPR two-component system in B. subtilis is to monitor WTA metabolism. PhoR autokinase activity is controlled by the level of an intermediate in WTA synthesis that is sensed through the intracellular PAS domain. The pool of this intermediate generated by WTA synthesis in cells growing under phosphate-replete conditions is sufficient to inhibit PhoR autokinase activity. However WTA synthesis is lowered upon phosphate limitation by the combined effects of PhoP ∼ P-mediated activation of tuaA-H transcription and repression of tagAB. These transcriptional changes combine to lower the level of the inhibitory WTA metabolite thereby increasing PhoR autokinase activity. This amplifies the PHO response with full induction being achieved ∼ 90 min after the onset of phosphate limitation.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Fosfatos/metabolismo , Ácidos Teicoicos/metabolismo , Alcanos/farmacologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fosforilação , Regiões Promotoras Genéticas , Transdução de Sinais
10.
Bioorg Med Chem Lett ; 24(3): 905-10, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24393581

RESUMO

The thienopyridine antiplatelet agent, ticlopidine and its analog, clopidogrel, have been shown to potentiate the action of ß-lactam antibiotics, reversing the methicillin-resistance phenotype of methicillin-resistant Staphylococcus aureus (MRSA), in vitro. Interestingly, these thienopyridines inhibit the action of TarO, the first enzyme in the synthesis of wall teichoic acid, an important cell wall polymer in Gram-positive bacteria. In the human body, both ticlopidine and clopidogrel undergo a rapid P450-dependent oxidation into their respective antiplatelet-active metabolites, resulting in very low plasma concentrations of intact drug. Herein, a series of analogs of ticlopidine and clopidogrel that would avoid oxidative metabolism were designed, prepared and evaluated as inhibitors of TarO. Specifically, we replaced the P450-labile thiophene ring of ticlopidine and clopidogrel to a more stable phenyl group to generate 2-(2-chlorobenzyl)-1,2,3,4-tetrahydro-isoquinoline) (6) and (2-chloro-phenyl)-(3,4-dihydro-1H-isoquinolin-2-yl)-acetic acid methyl ester (22), respectively. The latter molecules displayed inhibitory activity against TarO and formed the basis of a library of analogs. Most synthesized compounds exhibited comparable efficacy to ticlopidine and clopidogrel. So far, it was introduction of a trifluoromethyl group to compound 6, to generate 2-(2-trifluoromethyl-benzyl)-1,2,3,4-tetrahydro-isoquinoline (13) that exhibited enhanced activity against TarO. Compound 13 represents a novel stable inhibitor of TarO with synergistic impact on ß-lactam antibiotics against MRSA and low potential for P-450 metabolism.


Assuntos
Desenho de Fármacos , Ácidos Teicoicos/antagonistas & inibidores , Ticlopidina/análogos & derivados , Ticlopidina/química , Clopidogrel , Concentração Inibidora 50 , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Estrutura Molecular , Oxirredução/efeitos dos fármacos , Ácidos Teicoicos/química , Ticlopidina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...