Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Can J Microbiol ; 64(1): 28-40, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29045798

RESUMO

The objective of this study was to evaluate bacterial community structure and diversity in soil aggregate fractions when salinized farmland was reclaimed after >27 years of abandonment and then farmed again for 1, 5, 10, and 15 years. Illumina MiSeq high-throughput sequencing was performed to characterize the soil bacterial communities in 5 aggregate size classes in each treatment. The results indicated that reclamation significantly increased macro-aggregation (>0.25 mm), as well as soil organic C, available N, and available P. The 10-year field had the largest proportion (93.9%) of soil in the macro-aggregate size classes (i.e., >0.25 mm) and the highest soil electrical conductivity. The 5 most dominant phyla in the soil samples were Proteobacteria, Actinobacteria, Gemmatimonadetes, Acidobacteria, and Bacteroidetes. The phylogenetic diversity, Chao1, and Shannon indices increased after the abandoned land was reclaimed for farming, reaching maximums in the 15-year field. Among aggregate size classes, the 1-0.25 mm aggregates generally had the highest phylogenetic diversity, Chao1, and Shannon indices. Soil organic C and soil electrical conductivity were the main environmental factors affecting the soil bacterial communities. The composition and structure of the bacterial communities also varied significantly depending on soil aggregate size and time since reclamation.


Assuntos
Bactérias/classificação , Biodiversidade , Microbiologia do Solo , China , Filogenia , Solo/química
2.
Can J Microbiol ; 64(3): 167-181, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29227747

RESUMO

Salinized land in the China's Xinjiang Region is being reclaimed for continuous cotton production. The specific objectives of this field study were (i) to compare bacterial composition and diversity in unfarmed (i.e., unreclaimed) and continuously (5, 10, 15, and 20 years) cropped soils and (ii) to explore correlations between soil properties and the bacterial communities identified by Illumina MiSeq sequencing. The results showed that bacterial species richness and diversity increased for 10-15 years and then declined when salinized land was reclaimed for cotton production. Proteobacteria and Firmicutes were the dominant phyla in unfarmed soil. Continuous cropping reduced the abundance of Firmicutes but increased that of Chloroflexi, Acidobacteria, and Actinobacteria. Cluster analyses showed that the greatest similarities in bacterial communities were between the 5- and 10-year treatments and between the 15- and 20-year treatments. Soil pH, electrical conductivity, alkali-hydrolyzable N, and available P were significantly correlated with bacterial community distribution. Overall, cotton production improved soil physicochemical properties and altered the structure and composition of soil bacterial communities compared with unfarmed soil. These positive effects began to decrease after 10-15 years of continuous cotton production.


Assuntos
Bactérias/genética , Microbiologia do Solo , Bactérias/crescimento & desenvolvimento , Biodiversidade , China , Produtos Agrícolas/crescimento & desenvolvimento , Gossypium/crescimento & desenvolvimento , Tipagem Molecular , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Tolerância ao Sal , Análise de Sequência de RNA , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...