Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37761114

RESUMO

This study aimed to optimize the roasting conditions for sacha inchi (Plukenetia volubilis L.) seeds using the central composite design (CCD) of the response surface methodology (RSM). The antioxidant activity and oxidation indicators (peroxide and TBA values) were assessed, along with the impact of roasting on the fatty acid profile and chemical characterization of the seeds using gas chromatography. The results demonstrated that roasting partially increased the indicators of lipid oxidation in the oil extracted from roasted seeds, as well as the antioxidant activity of the seeds. The optimal roasting conditions were determined using CCD and RSM, resulting in an optimized temperature of 134.28 °C and 18.84 min. The fatty acid contents were not significantly affected by the roasting intensity, whereas a higher presence of amino acids was found in the seeds roasted at 140 °C for 15 min. In conclusion, it is suggested that the optimal roasting conditions for enhancing amino acid presence, improving antioxidant activity, and maintaining oxidative stability in sacha inchi seeds fall within the temperature range of 134-140 °C and a roasting duration of 15-20 min.

2.
Biomolecules ; 9(8)2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370321

RESUMO

In this study, we describe the optimization of a Hydrophilic Interaction Liquid Chromatography coupled to mass spectrometry (HILIC-MS) method for the evaluation of 14 metabolites related to the de novo synthesis of pyrimidines (dnSP) while using multivariate analysis, which is the metabolic pathway for pyrimidine nucleotide production. A multivariate design was used to set the conditions of the column temperature, flow of the mobile phase, additive concentration, gradient rate, and pH of the mobile phase in order to attain higher peak resolution and ionization efficiency in shorter analysis times. The optimization process was carried out while using factorial fractional designs, Box-Behnken design and central composite design while using two zwitterionic columns, ZIC-p-HILIC and ZIC-HILIC, polymeric, and silica-based columns, respectively. The factors were evaluated while using resolution (R), retention factor (k), efficiency of the column (N), and peak height (h) as the response variables. The best optimized conditions were found with the ZIC-p-HILIC column: elution gradient rate 2 min., pH 7.0, temperature 45 °C, mobile phase flow of 0.35 mL min-1, and additive (ammonium acetate) concentration of 6 mM. The total analysis time was 28 min. The ZIC-p-HILIC LC-MS method yielded satisfactory results for linearity of calibration curves, limit of detection (LOD), and limit of quantification (LOQ). The method has been shown to be appropriate for the analysis of dnSP on samples of tomato plants that were infected with Phytophthora infestans.


Assuntos
Cromatografia Líquida , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas , Pirimidinas/metabolismo , Concentração de Íons de Hidrogênio , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Análise Multivariada , Phytophthora infestans/fisiologia , Temperatura
3.
Molecules ; 23(12)2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30558273

RESUMO

Tomato crops suffer attacks of various pathogens that cause large production losses. Late blight caused by Phytophthora infestans is a devastating disease in tomatoes because of its difficultly to control. Here, we applied metabolomics based on liquid chromatography⁻mass spectrometry (LC-MS) and metabolic profiling by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) in combination with multivariate data analysis in the early detection of late blight on asymptomatic tomato plants and to discriminate infection times of 4, 12, 24, 36, 48, 60, 72 and 96 h after inoculation (hpi). MALDI-MS and LC-MS profiles of metabolites combined with multivariate data analysis are able to detect early-late blight-infected tomato plants, and metabolomics based on LC-MS discriminates infection times in asymptomatic plants. We found the metabolite tomatidine as an important biomarker of infection, saponins as early infection metabolite markers and isocoumarin as early and late asymptomatic infection marker along the post infection time. MALDI-MS and LC-MS analysis can therefore be used as a rapid and effective method for the early detection of late blight-infected tomato plants, offering a suitable tool to guide the correct management and application of sanitary defense approaches. LC-MS analysis also appears to be a suitable tool for identifying major metabolites of asymptomatic late blight-infected tomato plants.


Assuntos
Metabolômica , Phytophthora infestans/fisiologia , Doenças das Plantas/microbiologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Cromatografia Líquida , Análise Discriminante , Análise dos Mínimos Quadrados , Análise Multivariada , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...