Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 42(45): 8508-8513, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351824

RESUMO

Understanding the unique functions of different subregions of primate prefrontal cortex has been a longstanding goal in cognitive neuroscience. Yet, the anatomy and function of one of its largest subregions (the frontopolar cortex) remain enigmatic and underspecified. Our Society for Neuroscience minisymposium Primate Frontopolar Cortex: From Circuits to Complex Behaviors will comprise a range of new anatomic and functional approaches that have helped to clarify the basic circuit anatomy of the frontal pole, its functional involvement during performance of cognitively demanding behavioral paradigms in monkeys and humans, and its clinical potential as a target for noninvasive brain stimulation in patients with brain disorders. This review consolidates knowledge about the anatomy and connectivity of frontopolar cortex and provides an integrative summary of its function in primates. We aim to answer the question: what, if anything, does frontopolar cortex contribute to goal-directed cognition and action?


Assuntos
Cognição , Objetivos , Animais , Humanos , Cognição/fisiologia , Córtex Pré-Frontal/fisiologia , Lobo Frontal/fisiologia , Primatas , Haplorrinos
2.
Eur J Neurosci ; 54(11): 7918-7945, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34796568

RESUMO

According to dual-process signal-detection (DPSD) theories, short- and long-term recognition memory draws upon both familiarity and recollection. It remains unclear how primate prefrontal cortex (PFC) contributes to these processes, but frequency-specific neuronal activities are considered to play a key role. In Experiment 1, nonhuman primate (NHP) local field potential (LFP) electrophysiological recordings in macaque left dorsolateral PFC (dlPFC) revealed performance-related differences in a low-beta frequency range during the sample presentation phase of a visual object recognition memory task. Experiment 2 employed a similar task in humans and targeted left dlPFC (and vertex as a control) with repetitive transcranial magnetic stimulation (rTMS) at 12.5 Hz during occasional sample presentations. This low-beta frequency rTMS to dlPFC decreased DPSD derived indices of recollection, but not familiarity, in subsequent memory tests of the targeted samples after short delays. The same number of rTMS pulses over the same total duration albeit at a random frequency had no effect on either recollection or familiarity. Neither stimulation protocols had any causal effect upon behaviour when targeted to the control site (vertex). In this study, our hypotheses for our human TMS study were derived from our observations in NHPs; this approach might inspire further translational research through investigation of homologous brain regions and tasks across species using similar neuroscientific methodologies to advance the neural mechanism of recognition memory in primates.


Assuntos
Córtex Pré-Frontal Dorsolateral , Estimulação Magnética Transcraniana , Animais , Humanos , Macaca , Rememoração Mental , Córtex Pré-Frontal , Reconhecimento Psicológico
3.
Interface Focus ; 8(4): 20180021, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29951198

RESUMO

We discuss a recently proposed approach to solve the classic feature-binding problem in primate vision that uses neural dynamics known to be present within the visual cortex. Broadly, the feature-binding problem in the visual context concerns not only how a hierarchy of features such as edges and objects within a scene are represented, but also the hierarchical relationships between these features at every spatial scale across the visual field. This is necessary for the visual brain to be able to make sense of its visuospatial world. Solving this problem is an important step towards the development of artificial general intelligence. In neural network simulation studies, it has been found that neurons encoding the binding relations between visual features, known as binding neurons, emerge during visual training when key properties of the visual cortex are incorporated into the models. These biological network properties include (i) bottom-up, lateral and top-down synaptic connections, (ii) spiking neuronal dynamics, (iii) spike timing-dependent plasticity, and (iv) a random distribution of axonal transmission delays (of the order of several milliseconds) in the propagation of spikes between neurons. After training the network on a set of visual stimuli, modelling studies have reported observing the gradual emergence of polychronization through successive layers of the network, in which subpopulations of neurons have learned to emit their spikes in regularly repeating spatio-temporal patterns in response to specific visual stimuli. Such a subpopulation of neurons is known as a polychronous neuronal group (PNG). Some neurons embedded within these PNGs receive convergent inputs from neurons representing lower- and higher-level visual features, and thus appear to encode the hierarchical binding relationship between features. Neural activity with this kind of spatio-temporal structure robustly emerges in the higher network layers even when neurons in the input layer represent visual stimuli with spike timings that are randomized according to a Poisson distribution. The resulting hierarchical representation of visual scenes in such models, including the representation of hierarchical binding relations between lower- and higher-level visual features, is consistent with the hierarchical phenomenology or subjective experience of primate vision and is distinct from approaches interested in segmenting a visual scene into a finite set of objects.

4.
PLoS One ; 12(5): e0178304, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28562618

RESUMO

A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT) learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior of Hebbian learning in VisNet.


Assuntos
Mãos , Aprendizagem/fisiologia , Primatas/fisiologia , Vias Visuais/fisiologia , Animais , Modelos Neurológicos , Rede Nervosa
5.
Network ; 27(1): 29-51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27253452

RESUMO

Neurons have been found in the primate brain that respond to objects in specific locations in hand-centered coordinates. A key theoretical challenge is to explain how such hand-centered neuronal responses may develop through visual experience. In this paper we show how hand-centered visual receptive fields can develop using an artificial neural network model, VisNet, of the primate visual system when driven by gaze changes recorded from human test subjects as they completed a jigsaw. A camera mounted on the head captured images of the hand and jigsaw, while eye movements were recorded using an eye-tracking device. This combination of data allowed us to reconstruct the retinal images seen as humans undertook the jigsaw task. These retinal images were then fed into the neural network model during self-organization of its synaptic connectivity using a biologically plausible trace learning rule. A trace learning mechanism encourages neurons in the model to learn to respond to input images that tend to occur in close temporal proximity. In the data recorded from human subjects, we found that the participant's gaze often shifted through a sequence of locations around a fixed spatial configuration of the hand and one of the jigsaw pieces. In this case, trace learning should bind these retinal images together onto the same subset of output neurons. The simulation results consequently confirmed that some cells learned to respond selectively to the hand and a jigsaw piece in a fixed spatial configuration across different retinal views.


Assuntos
Fenômenos Fisiológicos Oculares , Primatas , Animais , Mãos , Humanos , Aprendizagem , Redes Neurais de Computação , Neurônios
6.
Front Comput Neurosci ; 9: 147, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26696876

RESUMO

Neurons that respond to visual targets in a hand-centered frame of reference have been found within various areas of the primate brain. We investigate how hand-centered visual representations may develop in a neural network model of the primate visual system called VisNet, when the model is trained on images of the hand seen against natural visual scenes. The simulations show how such neurons may develop through a biologically plausible process of unsupervised competitive learning and self-organization. In an advance on our previous work, the visual scenes consisted of multiple targets presented simultaneously with respect to the hand. Three experiments are presented. First, VisNet was trained with computerized images consisting of a realistic image of a hand and a variety of natural objects, presented in different textured backgrounds during training. The network was then tested with just one textured object near the hand in order to verify if the output cells were capable of building hand-centered representations with a single localized receptive field. We explain the underlying principles of the statistical decoupling that allows the output cells of the network to develop single localized receptive fields even when the network is trained with multiple objects. In a second simulation we examined how some of the cells with hand-centered receptive fields decreased their shape selectivity and started responding to a localized region of hand-centered space as the number of objects presented in overlapping locations during training increases. Lastly, we explored the same learning principles training the network with natural visual scenes collected by volunteers. These results provide an important step in showing how single, localized, hand-centered receptive fields could emerge under more ecologically realistic visual training conditions.

7.
PLoS One ; 8(6): e66272, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23799086

RESUMO

We show how hand-centred visual representations could develop in the primate posterior parietal and premotor cortices during visually guided learning in a self-organizing neural network model. The model incorporates trace learning in the feed-forward synaptic connections between successive neuronal layers. Trace learning encourages neurons to learn to respond to input images that tend to occur close together in time. We assume that sequences of eye movements are performed around individual scenes containing a fixed hand-object configuration. Trace learning will then encourage individual cells to learn to respond to particular hand-object configurations across different retinal locations. The plausibility of this hypothesis is demonstrated in computer simulations.


Assuntos
Simulação por Computador , Redes Neurais de Computação , Software , Algoritmos , Animais , Encéfalo/fisiologia , Mãos/fisiologia , Aprendizagem , Modelos Biológicos , Rede Nervosa/fisiologia , Primatas/fisiologia , Percepção Visual
8.
Behav Processes ; 84(1): 526-35, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20117190

RESUMO

This paper investigates the possible role of neuroanatomical features in Pavlovian conditioning, via computer simulations with layered, feedforward artificial neural networks. The networks' structure and functioning are described by a strongly bottom-up model that takes into account the roles of hippocampal and dopaminergic systems in conditioning. Neuroanatomical features were simulated as generic structural or architectural features of neural networks. We focused on the number of units per hidden layer and connectivity. The effect of the number of units per hidden layer was investigated through simulations of resistance to extinction in fully connected networks. Large networks were more resistant to extinction than small networks, a stochastic effect of the asynchronous random procedure used in the simulator to update activations and weights. These networks did not simulate second-order conditioning because weight competition prevented conditioning to a stimulus after conditioning to another. Partially connected networks simulated second-order conditioning and devaluation of the second-order stimulus after extinction of a similar first-order stimulus. Similar stimuli were simulated as nonorthogonal input-vectors.


Assuntos
Condicionamento Clássico , Redes Neurais de Computação , Algoritmos , Simulação por Computador , Condicionamento Clássico/fisiologia , Dopamina/metabolismo , Extinção Psicológica/fisiologia , Hipocampo/anatomia & histologia , Hipocampo/fisiologia , Humanos , Modelos Neurológicos , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Processos Estocásticos , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...