Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Microb Cell ; 11: 90-105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495453

RESUMO

The yeast Saccharomyces cerevisiae is widely used in food and non-food industries. During industrial fermentation yeast strains are exposed to fluctuations in oxygen concentration, osmotic pressure, pH, ethanol concentration, nutrient availability and temperature. Fermentation performance depends on the ability of the yeast strains to adapt to these changes. Suboptimal conditions trigger responses to the external stimuli to allow homeostasis to be maintained. Stress-specific signalling pathways are activated to coordinate changes in transcription, translation, protein function, and metabolic fluxes while a transient arrest of growth and cell cycle progression occur. cAMP-PKA, HOG-MAPK and CWI signalling pathways are turned on during stress response. Comprehension of the mechanisms involved in the responses and in the adaptation to these stresses during fermentation is key to improving this industrial process. The scope of this review is to outline the advancement of knowledge about the cAMP-PKA signalling and the crosstalk of this pathway with the CWI and HOG-MAPK cascades in response to the environmental challenges heat and hyperosmotic stress.

2.
Biochim Biophys Acta Mol Cell Res ; 1869(4): 119209, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34999138

RESUMO

In Saccharomyces cerevisiae cAMP regulates different cellular processes through PKA. The specificity of the response of the cAMP-PKA pathway is highly regulated. Here we address the mechanism through which the cAMP-PKA pathway mediates its response to heat shock and thermal adaptation in yeast. PKA holoenzyme is composed of a regulatory subunit dimer (Bcy1) and two catalytic subunits (Tpk1, Tpk2, or Tpk3). PKA subunits are differentially expressed under certain growth conditions. Here we demonstrate the increased abundance and half-life of TPK1 mRNA and the assembly of this mRNA in cytoplasmic foci during heat shock at 37 °C. The resistance of the foci to cycloheximide-induced disassembly along with the polysome profiling analysis suggest that TPK1 mRNA is impaired for entry into translation. TPK1 expression was also evaluated during a recurrent heat shock and thermal adaptation. Tpk1 protein level is significantly increased during the recovery periods. The crosstalk of cAMP-PKA pathway and CWI signalling was also studied. Wsc3 sensor and some components of the CWI pathway are necessary for the TPK1 expression upon heat shock. The assembly in foci upon thermal stress depends on Wsc3. Tpk1 expression is lower in a wsc3∆ mutant than in WT strain during thermal adaptation and thus the PKA levels are also lower. An increase in Tpk1 abundance in the PKA holoenzyme in response to heat shock is presented, suggesting that a recurrent stress enhanced the fitness for the coming favourable conditions. Therefore, the regulation of TPK1 expression by thermal stress contributes to the specificity of cAMP-PKA signalling.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Meia-Vida , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Polirribossomos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
3.
Biochim Biophys Acta Gene Regul Mech ; 1863(9): 194599, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32599085

RESUMO

In response to environmental changes cells rapidly rearrange their gene expression pattern in order to adapt to the new conditions. Chromatin remodeling is critical for this process playing a major role in the induction of genes involved in stress responses. We demonstrated previously that TPK1, encoding one of the catalytic subunits of PKA from Saccharomyces cerevisiae, is upregulated under heat shock. Herein, we investigate the chromatin remodeling of the TPK1, TPK2 and TPK3 promoters under heat stress. The TPK1 promoter is the only one that presents three positioned nucleosomes. Upon heat stress or osmostress these nucleosomes are evicted in clear correlation with promoter activation and upregulation of TPK1 mRNA levels. We find that remodelers SWI/SNF, RSC, INO80 and ISW1 participate in chromatin remodeling of the TPK1 promoter under thermal stress conditions. RSC and INO80 are necessary for nucleosomes positioning and contribute to repression of the TPK1 promoter under normal conditions while SWI/SNF participates in the eviction of nucleosomes after heat stress. SWI/SNF complex is recruited to the TPK1 promoter upon heat shock in a Msn2/4-dependent manner. Finally, both Tpk1 and Tpk2 catalytic subunits are recruited to the TPK1 promoter with opposite association patterns. Tpk1 catalytic activity is necessary for nucleosome rearrangement on the TPK1 promoter while Tpk2 and Tpk3 inhibit the promoter activity and maintain a repressive chromatin conformation. This work enlightens the mechanism of regulation of TPK1 expression during heat-stress, contributing to the knowledge of specificity in fine-tuning the cAMP-PKA signaling circuit.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas Quinases Dependentes de AMP Cíclico/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Proteínas de Ligação a DNA/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica
4.
PLoS One ; 12(10): e0185416, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29045428

RESUMO

Cellular responses to stress stem from a variety of different mechanisms, including translation arrest and relocation of the translationally repressed mRNAs to ribonucleoprotein particles like stress granules (SGs) and processing bodies (PBs). Here, we examine the role of PKA in the S. cerevisiae heat shock response. Under mild heat stress Tpk3 aggregates and promotes aggregation of eIF4G, Pab1 and eIF4E, whereas severe heat stress leads to the formation of PBs and SGs that contain both Tpk2 and Tpk3 and a larger 48S translation initiation complex. Deletion of TPK2 or TPK3 impacts upon the translational response to heat stress of several mRNAs including CYC1, HSP42, HSP30 and ENO2. TPK2 deletion leads to a robust translational arrest, an increase in SGs/PBs aggregation and translational hypersensitivity to heat stress, whereas TPK3 deletion represses SGs/PBs formation, translational arrest and response for the analyzed mRNAs. Therefore, this work provides evidence indicating that Tpk2 and Tpk3 have opposing roles in translational adaptation during heat stress, and highlight how the same signaling pathway can be regulated to generate strikingly distinct physiological outputs.


Assuntos
Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Resposta ao Choque Térmico , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Estresse Fisiológico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Grânulos Citoplasmáticos/metabolismo , Agregados Proteicos , Subunidades Proteicas/metabolismo , Frações Subcelulares/enzimologia
5.
Yeast ; 34(12): 495-508, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28812308

RESUMO

Yeast cells can adapt their growth in response to the nutritional environment. Glucose is the favourite carbon source of Saccharomyces cerevisiae, which prefers a fermentative metabolism despite the presence of oxygen. When glucose is consumed, the cell switches to the aerobic metabolism of ethanol, during the so-called diauxic shift. The difference between fermentative and aerobic growth is in part mediated by a regulatory mechanism called glucose repression. During glucose derepression a profound gene transcriptional reprogramming occurs and genes involved in the utilization of alternative carbon sources are expressed. Protein kinase A (PKA) controls different physiological responses following the increment of cAMP as a consequence of a particular stimulus. cAMP-PKA is one of the major pathways involved in the transduction of glucose signalling. In this work the regulation of the promoters of the PKA subunits during respiratory and fermentative metabolism are studied. It is demonstrated that all these promoters are upregulated in the presence of glycerol as carbon source through the Snf1/Cat8 pathway. However, in the presence of glucose as carbon source, the regulation of each PKA promoter subunits is different and only TPK1 is repressed by the complex Hxk2/Mig1 in the presence of active Snf1. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Saccharomyces cerevisiae/enzimologia , Transcrição Gênica/fisiologia , Imunoprecipitação da Cromatina , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/genética , Regulação para Baixo , Fermentação , Glucose/metabolismo , Glicerol/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Fosforilação , Plasmídeos , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Regulação para Cima , beta-Galactosidase/metabolismo
6.
FEMS Yeast Res ; 16(5)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27188886

RESUMO

The cAMP-dependent protein kinase (PKA) signaling is a broad pathway that plays important roles in the transduction of environmental signals triggering precise physiological responses. However, how PKA achieves the cAMP-signal transduction specificity is still in study. The regulation of expression of subunits of PKA should contribute to the signal specificity. Saccharomyces cerevisiae PKA holoenzyme contains two catalytic subunits encoded by TPK1, TPK2 and TPK3 genes, and two regulatory subunits encoded by BCY1 gene. We studied the activity of these gene promoters using a fluorescent reporter synthetic genetic array screen, with the goal of systematically identifying novel regulators of expression of PKA subunits. Gene ontology analysis of the identified modulators showed enrichment not only in the category of transcriptional regulators, but also in less expected categories such as lipid and phosphate metabolism. Inositol, choline and phosphate were identified as novel upstream signals that regulate transcription of PKA subunit genes. The results support the role of transcription regulation of PKA subunits in cAMP specificity signaling. Interestingly, known targets of PKA phosphorylation are associated with the identified pathways opening the possibility of a reciprocal regulation. PKA would be coordinating different metabolic pathways and these processes would in turn regulate expression of the kinase subunits.


Assuntos
Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transcrição Gênica , Fusão Gênica Artificial , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Perfilação da Expressão Gênica , Genes Reporter , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
J Biol Chem ; 285(39): 29770-9, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20639203

RESUMO

The specificity in phosphorylation by kinases is determined by the molecular recognition of the peptide target sequence. In Saccharomyces cerevisiae, the protein kinase A (PKA) specificity determinants are less studied than in mammalian PKA. The catalytic turnover numbers of the catalytic subunits isoforms Tpk1 and Tpk2 were determined, and both enzymes are shown to have the same value of 3 s(-1). We analyze the substrate behavior and sequence determinants around the phosphorylation site of three protein substrates, Pyk1, Pyk2, and Nth1. Nth1 protein is a better substrate than Pyk1 protein, and both are phosphorylated by either Tpk1 or Tpk2. Both enzymes also have the same selectivity toward the protein substrates and the peptides derived from them. The three substrates contain one or more Arg-Arg-X-Ser consensus motif, but not all of them are phosphorylated. The determinants for specificity were studied using the peptide arrays. Acidic residues in the position P+1 or in the N-terminal flank are deleterious, and positive residues present beyond P-2 and P-3 favor the catalytic reaction. A bulky hydrophobic residue in position P+1 is not critical. The best substrate has in position P+4 an acidic residue, equivalent to the one in the inhibitory sequence of Bcy1, the yeast regulatory subunit of PKA. The substrate effect in the holoenzyme activation was analyzed, and we demonstrate that peptides and protein substrates sensitized the holoenzyme to activation by cAMP in different degrees, depending on their sequences. The results also suggest that protein substrates are better co-activators than peptide substrates.


Assuntos
Domínio Catalítico/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Motivos de Aminoácidos , Proteínas Quinases Dependentes de AMP Cíclico/genética , Ativação Enzimática/fisiologia , Quinase 2 de Adesão Focal/genética , Quinase 2 de Adesão Focal/metabolismo , Holoenzimas/genética , Holoenzimas/metabolismo , Fosforilação/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato/fisiologia
8.
Antonie Van Leeuwenhoek ; 91(3): 237-51, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17080289

RESUMO

We have previously shown that protein kinase A of the medically important zygomycete Mucor rouxii participates in fungal morphology through cytoskeletal organization. As a first step towards finding the link between protein kinase A and cytoskeletal organization we here demonstrate the cloning of the Rho1 gene and the characterization of its protein product. The RHO1 protein primary sequence shows 70-85% identity with fungal RHO1 or mammalian RhoA. Two protein kinase A phosphorylation sequences in adequate context are predicted, Ser73 and Ser135. The peptide IRRNSQKFV, containing Ser135 proved to be a good substrate for M. rouxii protein kinase A catalytic subunit. The over-expressed Rho1 fully complements a Saccharomyces cerevisiae null mutant. The endogenous protein was identified by western blot against a developed antibody and by ADP-ribosylation. Localization in germlings was visualized by immunofluorescence; the protein was localized in patches in the mother cell surface and excluded from the germ tube. Measurement of Rho1 expression during germination indicates that Rho1, at both the mRNA and protein levels, correlates with differentiation and not with growth. Rho1 has been shown to be the regulatory protein of the beta-1,3-glucan synthase complex in fungi in which beta-1,3-glucans are major components of the cell wall. Even though glucans have not been detected in zygomycetes, caspofungin, an echinochandin known to be an inhibitor of beta-1,3-glucan synthase complex, is shown here to have a negative effect on growth and to produce an alteration on morphology when added to M. rouxii growth culture medium. This result has an important impact on the possible participation of beta-1,3-glucans on the regulation of morphology of zygomycetes.


Assuntos
Proteínas Fúngicas/metabolismo , Mucor/crescimento & desenvolvimento , Mucor/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Mucor/citologia , Filogenia , beta-Glucanas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...