Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Res ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38908014

RESUMO

The black sea urchin (Arbacia lixula) is a keystone species inhabiting the coastal shallow waters of the Mediterranean Sea, which is a key driver of littoral communities' structure. Here, we present the first genome assembly and annotation of this species, standing as the first Arbacioida genome, including both nuclear and mitochondrial genomes. To obtain a chromosome-level assembly, we used a combination of PacBio high fidelity (HiFi) reads and chromatin capture reads (Omni-C). In addition, we generated a high-quality nuclear annotation of both coding and non-coding genes, by using published RNA-Seq data from several individuals of A. lixula and gene models from closely related species. The nuclear genome assembly has a total span of 607.91 Mb, being consistent with its experimentally estimated genome size. The assembly contains 22 chromosome-scale scaffolds (96.52% of the total length), which coincides with its known karyotype. A total of 72,767 transcripts were predicted from the nuclear genome, 24,171 coding, and 48,596 non-coding that included lncRNA, snoRNA, and tRNAs. The circularized mitochondrial genome had 15740 bp comprising 13 protein-coding genes, 2 rRNA, and 22 tRNA. This reference genome will enhance ongoing A. lixula studies and benefit the wider sea urchin scientific community.

2.
Mitochondrial DNA B Resour ; 9(6): 771-776, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919811

RESUMO

Here, we present the mitochondrial sequences of two sea slugs (Heterobranchia): Runcina aurata and Facelina auriculata, the latter being the type species of the family. The mitochondrial genomes are 14,282 and 14,171bp in length, respectively, with a complete set of 13 PCGs, 2 rRNAs, and 22 tRNAs. None of the mitogenomes show gene reorganization, keeping the standard mitogenomic structure of Heterobranchia. Nucleotide composition differs significantly between them, with R. aurata showing the most AT-rich mitogenome (25.7% GC content) reported to date in Heterobranchia, and F. auriculata showing a rich GC content (35%) compared with other heterobranch mitochondrial genomes.

4.
Mar Pollut Bull ; 203: 116477, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759466

RESUMO

The proliferation of marine invasive species is a mounting concern. While the role of microbial communities in invasive ascidian species is recognized, the role of seasonal shifts in microbiome composition remains largely unexplored. We sampled five individuals of the invasive ascidian Styela plicata quarterly from January 2020 to October 2021 in two harbours, examining gills, tunics, and surrounding water. By analysing Amplicon Sequence Variants (ASVs) and seawater trace elements, we found that compartment (seawater, tunic, or gills) was the primary differentiating factor, followed by harbour. Clear seasonal patterns were evident in seawater bacteria, less so in gills, and absent in tunics. We identified compartment-specific bacteria, as well as seasonal indicator ASVs and ASVs correlated with trace element concentrations. Among these bacteria, we found that Endozoicomonas, Hepatoplasma and Rhodobacteraceae species had reported functions which might be necessary for overcoming seasonality and trace element shifts. This study contributes to understanding microbiome dynamics in invasive holobiont systems, and the patterns found indicate a potential role in adaptation and invasiveness.


Assuntos
Espécies Introduzidas , Microbiota , Água do Mar , Oligoelementos , Urocordados , Animais , Oligoelementos/análise , Urocordados/microbiologia , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Simbiose , Estações do Ano , Brânquias/microbiologia
5.
BMC Genomics ; 25(1): 410, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664648

RESUMO

BACKGROUND: Genomic architecture is a key evolutionary trait for living organisms. Due to multiple complex adaptive and neutral forces which impose evolutionary pressures on genomes, there is a huge variability of genomic features. However, their variability and the extent to which genomic content determines the distribution of recovered loci in reduced representation sequencing studies is largely unexplored. RESULTS: Here, by using 80 genome assemblies, we observed that whereas plants primarily increase their genome size by expanding their intergenic regions, animals expand both intergenic and intronic regions, although the expansion patterns differ between deuterostomes and protostomes. Loci mapping in introns, exons, and intergenic categories obtained by in silico digestion using 2b-enzymes are positively correlated with the percentage of these regions in the corresponding genomes, suggesting that loci distribution mostly mirrors genomic architecture of the selected taxon. However, exonic regions showed a significant enrichment of loci in all groups regardless of the used enzyme. Moreover, when using selective adaptors to obtain a secondarily reduced loci dataset, the percentage and distribution of retained loci also varied. Adaptors with G/C terminals recovered a lower percentage of selected loci, with a further enrichment of exonic regions, while adaptors with A/T terminals retained a higher percentage of loci and slightly selected more intronic regions than expected. CONCLUSIONS: Our results highlight how genome composition, genome GC content, RAD enzyme choice and use of base-selective adaptors influence reduced genome representation techniques. This is important to acknowledge in population and conservation genomic studies, as it determines the abundance and distribution of loci.


Assuntos
Composição de Bases , Genômica , Genômica/métodos , Animais , Íntrons/genética , Genoma , Éxons/genética , Loci Gênicos , Tamanho do Genoma , Plantas/genética , DNA Intergênico/genética
6.
iScience ; 26(10): 107812, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37744040

RESUMO

Animals, including invasive species, are complex entities consisting of a host and its associated symbionts (holobiont). The interaction between the holobiont components is crucial for the host's survival. However, our understanding of how microbiomes of invasive species change across different tissues, localities, and ontogenetic stages, is limited. In the introduced ascidian Styela plicata, we found that its microbiome is highly distinct and specialized among compartments (tunic, gill, and gut). Smaller but significant differences were also found across harbors, suggesting local adaptation, and between juveniles and adults. Furthermore, we found a correlation between the microbiome and environmental trace element concentrations, especially in adults. Functional analyses showed that adult microbiomes possess specific metabolic pathways that may enhance fitness during the introduction process. These findings highlight the importance of integrated approaches in studying the interplay between animals and microbiomes, as a first step toward understanding how it can affect the species' invasive success.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...